期刊文献+
共找到363篇文章
< 1 2 19 >
每页显示 20 50 100
Research on assessing compression quality taking into account the space-borne remote sensing images
1
作者 赫华颖 Zeng Yong Wang Wenyu 《High Technology Letters》 EI CAS 2015年第1期109-117,共9页
According to the remote sensing image characteristics, a set oi optimized compression quahty assessment methods is proposed on the basis of generating simulative images. Firstly, a means is put forward that generates ... According to the remote sensing image characteristics, a set oi optimized compression quahty assessment methods is proposed on the basis of generating simulative images. Firstly, a means is put forward that generates simulative images by scanning aerial films taking into account the space-borne remote sensing camera characteristics (including pixel resolution, histogram dynamic range and quantization). In the course of compression quality assessment, the objective assessment considers images texture changes and mutual relationship between simulative images and decompressed ima- ges, while the synthesized estimation factor (SEF) is brought out innovatively for the first time. Subjective assessment adopts a display setup -- 0.5mrn/pixel, which considers human visual char- acteristic and mainstream monitor. The set of methods are applied in compression plan design of panchromatic camera loaded on ZY-1-02C satellite. Through systematic and comprehensive assess- ment, simulation results show that image compression quality with the compression ratio of d:l can meet the remote sensing application requirements. 展开更多
关键词 remote sensing images compression images quality assessment blocking standard variance synthesized estimation factor (SEF) images display
下载PDF
No-Reference Quality Assessment of Enhanced Images
2
作者 Leida Li Wei Shen +3 位作者 Ke Gu Jinjian Wu Beijing Chen Jianying Zhang 《China Communications》 SCIE CSCD 2016年第9期121-130,共10页
Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remain... Image enhancement is a popular technique,which is widely used to improve the visual quality of images.While image enhancement has been extensively investigated,the relevant quality assessment of enhanced images remains an open problem,which may hinder further development of enhancement techniques.In this paper,a no-reference quality metric for digitally enhanced images is proposed.Three kinds of features are extracted for characterizing the quality of enhanced images,including non-structural information,sharpness and naturalness.Specifically,a total of 42 perceptual features are extracted and used to train a support vector regression(SVR) model.Finally,the trained SVR model is used for predicting the quality of enhanced images.The performance of the proposed method is evaluated on several enhancement-related databases,including a new enhanced image database built by the authors.The experimental results demonstrate the efficiency and advantage of the proposed metric. 展开更多
关键词 image enhancement quality assessment no-reference perceptual feature SVR
下载PDF
No-Reference Image Quality Assessment Method Based on Visual Parameters
3
作者 Yu-Hong Liu Kai-Fu Yang Hong-Mei Yan 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第2期171-184,共14页
Recent studies on no-reference image quality assessment (NR-IQA) methods usually learn to evaluate the image quality by regressing from human subjective scores of the training samples. This study presented an NR-IQA m... Recent studies on no-reference image quality assessment (NR-IQA) methods usually learn to evaluate the image quality by regressing from human subjective scores of the training samples. This study presented an NR-IQA method based on the basic image visual parameters without using human scored image databases in learning. We demonstrated that these features comprised the most basic characteristics for constructing an image and influencing the visual quality of an image. In this paper, the definitions, computational method, and relationships among these visual metrics were described. We subsequently proposed a no-reference assessment function, which was referred to as a visual parameter measurement index (VPMI), based on the integration of these visual metrics to assess image quality. It is established that the maximum of VPMI corresponds to the best quality of the color image. We verified this method using the popular assessment database—image quality assessment database (LIVE), and the results indicated that the proposed method matched better with the subjective assessment of human vision. Compared with other image quality assessment models, it is highly competitive. VPMI has low computational complexity, which makes it promising to implement in real-time image assessment systems. 展开更多
关键词 BANDWIDTH human VISUAL system information entropy LUMINANCE no-reference image quality assessment (NR-IQA) VISUAL parameter measurement index (VPMI)
下载PDF
No-Reference Stereo Image Quality Assessment Based on Transfer Learning
4
作者 Lixiu Wu Song Wang Qingbing Sang 《Journal of New Media》 2022年第3期125-135,共11页
In order to apply the deep learning to the stereo image quality evaluation,two problems need to be solved:The first one is that we have a bit of training samples,another is how to input the dimensional image’s left v... In order to apply the deep learning to the stereo image quality evaluation,two problems need to be solved:The first one is that we have a bit of training samples,another is how to input the dimensional image’s left view or right view.In this paper,we transfer the 2D image quality evaluation model to the stereo image quality evaluation,and this method solves the first problem;use the method of principal component analysis is used to fuse the left and right views into an input image in order to solve the second problem.At the same time,the input image is preprocessed by phase congruency transformation,which further improves the performance of the algorithm.The structure of the deep convolution neural network consists of four convolution layers and three maximum pooling layers and two fully connected layers.The experimental results on LIVE3D image database show that the prediction quality score of the model is in good agreement with the subjective evaluation value. 展开更多
关键词 no-reference stereo image quality assessment convolution neural network transfer learning phase congruency transformation image fusion
下载PDF
Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin 被引量:12
5
作者 WANG Jie LIU Dongwei +2 位作者 MA Jiali CHENG Yingnan WANG Lixin 《Journal of Arid Land》 SCIE CSCD 2021年第1期40-55,共16页
The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry o... The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas. 展开更多
关键词 eco-environmental quality arid remote sensing ecological index Moderate Resolution imaging Spectroradiometer(MODIS) landscape changes remote sensing monitoring Central Asia
下载PDF
Object-based classification of cloudy coastal areas using medium-resolution optical and SAR images for vulnerability assessment of marine disaster 被引量:2
6
作者 YANG Fengshuo YANG Xiaomei +3 位作者 WANG Zhihua LU Chen LI Zhi LIU Yueming 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第6期1955-1970,共16页
Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free a... Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas. 展开更多
关键词 COASTAL area marine DISASTER VULNERABILITY assessment remote sensing LAND use/cover object-based image analysis(OBIA)
下载PDF
No-reference blur assessment method based on gradient and saliency 被引量:2
7
作者 Jia Huizhen Lei Chucong +5 位作者 Wang Tonghan Li Tan Wu Jiasong Li Guang He Jianfeng Shu Huazhong 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期184-191,共8页
To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used... To evaluate the quality of blurred images effectively,this study proposes a no-reference blur assessment method based on gradient distortion measurement and salient region maps.First,a Gaussian low-pass filter is used to construct a reference image by blurring a given image.Gradient similarity is included to obtain the gradient distortion measurement map,which can finely reflect the smallest possible changes in textures and details.Second,a saliency model is utilized to calculate image saliency.Specifically,an adaptive method is used to calculate the specific salient threshold of the blurred image,and the blurred image is binarized to yield the salient region map.Block-wise visual saliency serves as the weight to obtain the final image quality.Experimental results based on the image and video engineering database,categorial image quality database,and camera image database demonstrate that the proposed method correlates well with human judgment.Its computational complexity is also relatively low. 展开更多
关键词 no-reference image quality assessment reblurring effect gradient similarity SALIENCY
下载PDF
Multi-Scale Blind Image Quality Predictor Based on Pyramidal Convolution 被引量:2
8
作者 Feng Yuan Xiao Shao 《Journal on Big Data》 2020年第4期167-176,共10页
Traditional image quality assessment methods use the hand-crafted features to predict the image quality score,which cannot perform well in many scenes.Since deep learning promotes the development of many computer visi... Traditional image quality assessment methods use the hand-crafted features to predict the image quality score,which cannot perform well in many scenes.Since deep learning promotes the development of many computer vision tasks,many IQA methods start to utilize the deep convolutional neural networks(CNN)for IQA task.In this paper,a CNN-based multi-scale blind image quality predictor is proposed to extract more effectivity multi-scale distortion features through the pyramidal convolution,which consists of two tasks:A distortion recognition task and a quality regression task.For the first task,image distortion type is obtained by the fully connected layer.For the second task,the image quality score is predicted during the distortion recognition progress.Experimental results on three famous IQA datasets show that the proposed method has better performance than the previous traditional algorithms for quality prediction and distortion recognition. 展开更多
关键词 no-reference image quality assessment(NR-IQA) convolutional neural network deep learning feature extraction image distortion recognition
下载PDF
Structured Computational Modeling of Human Visual System for No-reference Image Quality Assessment
9
作者 Wen-Han Zhu Wei Sun +2 位作者 Xiong-Kuo Min Guang-Tao Zhai Xiao-Kang Yang 《International Journal of Automation and computing》 EI CSCD 2021年第2期204-218,共15页
Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate eval... Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures. 展开更多
关键词 image quality assessment(IQA) no-reference(NR) structural computational modeling human visual system visual feature extraction
原文传递
Remote sensing image fusion: an update in the context of Digital Earth
10
作者 Christine Pohl John van Genderen 《International Journal of Digital Earth》 SCIE EI 2014年第2期158-172,共15页
Remote sensing image fusion has come a long way from research experiments to an operational image processing technology.Having established a framework for image fusion at the end of the 90s,we now provide an overview ... Remote sensing image fusion has come a long way from research experiments to an operational image processing technology.Having established a framework for image fusion at the end of the 90s,we now provide an overview on the advances in image fusion during the past 15 years.Assembling information about new remote sensing image fusion techniques,recent technical developments and their influence on image fusion,international societies and working groups,and new journals and publications,we provide insight into new trends.It becomes clear that image fusion facilitates remote sensing image exploitation.It aims at achieving better and more reliable information to better understand complex Earth systems.The numerous publications during the last decade show that remote sensing image fusion is a well-established research field.The experiences gained foster other technological developments in terms of sensor configuration and data exploitation.Multi-modal data usage enables the implementation of the concept of Digital Earth.In order to advance in this respect,we recommend that updated guidelines and a set of commonly accepted quality assessment criteria are needed in image fusion. 展开更多
关键词 remote sensing image fusion ALGORITHMS quality assessment needs
原文传递
Classifications of Satellite Imagery for Identifying Urban Area Structures
11
作者 Abdlhamed Jamil Abdulmohsen Al-Shareef Amer Al-Thubaiti 《Advances in Remote Sensing》 2020年第1期12-32,共21页
This study compares three types of classifications of satellite data to identify the most suitable for making city maps in a semi-arid region. The source of our data was GeoEye 1 satellite. To classify this data, two ... This study compares three types of classifications of satellite data to identify the most suitable for making city maps in a semi-arid region. The source of our data was GeoEye 1 satellite. To classify this data, two pro-grammes were used: an Object-Based Classification and a Pixel-Based Classification. The second classification programme was further subdi-vided into two groups. The first group included classes (buildings, streets, vacant land, vegetations) which were treated simultaneously and on a single image basis. The second, however, was where each class was identified individually, and the results of each class produced a single image and were later enhanced. The classification results were then as-sessed and compared before and after enhancement using visual then automatic assessment. The results of the evaluation showed that the pix-el-based individual classification of each class was rated the highest after enhancement, increasing the Overall Classification Accuracy by 2%, from 89% to 91.00%. The results of this classification type were adopted for mapping Jeddah’s buildings, roads, and vegetations. 展开更多
关键词 remote sensing SATELLITE imageRY image Processing Classification assessment URBAN
下载PDF
A multimodal dense convolution network for blind image quality assessment
12
作者 Nandhini CHOCKALINGAM Brindha MURUGAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第11期1601-1615,共15页
Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA... Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA)is critical in improving content delivered to end users.Convolutional neural networks(CNNs)used in IQA face two common challenges.One issue is that these methods fail to provide the best representation of the image.The other issue is that the models have a large number of parameters,which easily leads to overfitting.To address these issues,the dense convolution network(DSC-Net),a deep learning model with fewer parameters,is proposed for no-reference image quality assessment(NR-IQA).Moreover,it is obvious that the use of multimodal data for deep learning has improved the performance of applications.As a result,multimodal dense convolution network(MDSC-Net)fuses the texture features extracted using the gray-level co-occurrence matrix(GLCM)method and spatial features extracted using DSC-Net and predicts the image quality.The performance of the proposed framework on the benchmark synthetic datasets LIVE,TID2013,and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task. 展开更多
关键词 no-reference image quality assessment(NR-IQA) Blind image quality assessment Multimodal dense convolution network(MDSC-Net) Deep learning Visual quality Perceptual quality
原文传递
Sentinel-2遥感影像在盘锦水稻米质监测中的应用研究
13
作者 王岩 高美琦 +3 位作者 李荣平 赵先丽 张美玲 卞景阳 《中国稻米》 北大核心 2024年第6期74-81,共8页
本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光... 本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。 展开更多
关键词 水稻 遥感 Sentinel-2遥感影像 光谱参数 稻米品质
下载PDF
基于RSEI的乌鲁木齐市生态环境质量时空演变研究
14
作者 卢响军 闫逸斐 +1 位作者 辛燕 孙宇颖 《环境监控与预警》 2024年第6期109-116,共8页
利用中分辨率成像光谱仪(MODIS)遥感影像数据,通过谷歌地球引擎(GEE)平台构建了乌鲁木齐市2003—2022年的遥感生态环境指数(RSEI),并采用泰尔-森(Theil-Sen)中位数法和曼-肯德尔(Mann-Kendall, MK)检验方法对RSEI的时空变化趋势进行了... 利用中分辨率成像光谱仪(MODIS)遥感影像数据,通过谷歌地球引擎(GEE)平台构建了乌鲁木齐市2003—2022年的遥感生态环境指数(RSEI),并采用泰尔-森(Theil-Sen)中位数法和曼-肯德尔(Mann-Kendall, MK)检验方法对RSEI的时空变化趋势进行了分析。结果表明:(1)乌鲁木齐市2003—2022年的RSEI平均值为0.37,整体生态环境质量处于中等偏下水平。RSEI表现出明显的空间差异,呈现出自南向北递减的空间变化趋势。(2)2003—2022年,乌鲁木齐市整体RSEI上升趋势值为0.02/10 a。具体来看,增长趋势主要集中在2003—2016年间,RSEI增长率为0.07/10 a。2003—2016年,RSEI呈现波动增长的趋势,但2016—2022年间,RSEI呈现显著下降趋势,下降率为0.21/10 a。(3)2003—2022年间,乌鲁木齐市RSEI下降区域主要分布在南部(乌鲁木齐县南缘)以及东部(达坂城东北部),RSEI增长区域主要分布在中部以及北部(米东区)。从2016—2022年RSEI的变化趋势来看,中部和北部的RSEI有下降趋势,后期应重点关注这2个区域的生态环境改善。 展开更多
关键词 乌鲁木齐 遥感生态指数 生态质量评价 时空演变
下载PDF
基于连续变化检测和分类算法的动态遥感生态指数构建 被引量:1
15
作者 张书 孙超 +2 位作者 胡茗 郑嘉豪 刘永超 《生态学报》 CAS CSCD 北大核心 2024年第2期497-510,共14页
沿海地区经济社会高速发展,是生态环境变化的焦点区域。然而,沿海地区云雨天气频发,遥感信息获取能力受限,导致遥感生态质量指数(RSEI)评价结果受成像日期变化而波动,可比性较差。针对以上问题,研究利用连续变化检测和分类(CCDC)算法构... 沿海地区经济社会高速发展,是生态环境变化的焦点区域。然而,沿海地区云雨天气频发,遥感信息获取能力受限,导致遥感生态质量指数(RSEI)评价结果受成像日期变化而波动,可比性较差。针对以上问题,研究利用连续变化检测和分类(CCDC)算法构建时间序列模型,通过合成任意时刻影像、重构遥感生态指数以及改进指数归一化方式,研发了一种动态遥感生态指数(DRSEI),细化了RSEI在区域生态质量监测的时间尺度,并应用于沿海城市宁波生态质量时空变化监测。结果表明:(1)RSEI对时间差异较为敏感,当影像年内成像时间相差逾1个月,RSEI差异可达0.147,这种差异会对长期生态质量动态监测的稳定性和准确性造成影响。(2)基于合成影像的DRSEI平均绝对偏差为0.097,接近成像时间相差半个月的RSEI差异(0.072),误差相对较小,一定程度上减小了真实影像时相差异引起的误差。(3)DRSEI能够表征任意时刻生态质量,通过年际(1986—2019年)和半月际(2019年)DRSEI分析揭示了宁波市生态质量总体下降趋势和时空异质性加剧过程。具体地,1986—2019年宁波市南部和西部森林区域的DRSEI持续上升,而近郊农田快速转化为建成区导致DRSEI不断下降。研究提出的DRSEI能够精确描述区域生态质量变化趋势,准确定位生态质量变化转折点,有望服务海岸带地区的生态质量定期监测与评估工作,支持沿海城市高质量发展与生态环境保护。 展开更多
关键词 生态质量 连续变化检测和分类算法 遥感生态指数 宁波市 动态监测 影像合成
下载PDF
压缩感知不同加速因子对心脏磁共振电影序列成像质量的影响
16
作者 王林林 贺克武 +5 位作者 赵韧 俞宏林 孙若愚 钱银锋 李小虎 余永强 《中国医学影像学杂志》 CSCD 北大核心 2024年第6期581-586,共6页
目的 探讨不同加速因子的压缩感知(CS)技术对心脏磁共振电影序列图像质量的影响及临床应用的可行性。资料与方法 前瞻性招募合肥市第一人民医院2021年1—7月40名健康志愿者进行心脏磁共振成像,扫描方案共4组(采用SENSE 2及加速因子分别... 目的 探讨不同加速因子的压缩感知(CS)技术对心脏磁共振电影序列图像质量的影响及临床应用的可行性。资料与方法 前瞻性招募合肥市第一人民医院2021年1—7月40名健康志愿者进行心脏磁共振成像,扫描方案共4组(采用SENSE 2及加速因子分别为3、4、8的CS心脏电影序列),每组成像方案包括四腔心、左心室短轴、左心室两腔心及三腔心序列,对比4种方案的图像质量主观评分、左心室心功能及16节段心肌厚度。结果 以SENSE 2图像为标准评分(5分),CS3、CS4评分均在3分以上,CS8评分均在3分及以下,其中CS3与SENSE 2序列的四腔心及左心室短轴图像质量主观评分差异无统计学意义(P均>0.05);左心室两腔心及三腔心各序列组图像质量主观评分差异均有统计学意义(P均<0.05)。4种成像方案的左心室心功能(左心室射血分数、左心室收缩末期容积、左心室舒张末期容积、左心室每搏输出量、左心室舒张末期心肌质量)(F=0.027、0.182、0.057、0.140、0.545)与心肌厚度(F=0.052~7.366)各组间差异均无统计学意义(P均>0.05)。结论 基于CS技术的心脏电影序列具有良好的应用前景。随着加速因子的增加,扫描时间逐渐减少,相应的图像质量降低,而当加速因子为4(与常规电影序列相比扫描时间减少50%)时,仍能够准确进行左心室心功能及心肌厚度测量,且图像质量基本满足诊断需求。 展开更多
关键词 心脏磁共振 压缩感知技术 图像质量评估 心室功能 心肌厚度
下载PDF
基于在轨MTF测试的定量图像质量提升方法
17
作者 周雨荷 伏瑞敏 齐文雯 《航天返回与遥感》 CSCD 北大核心 2024年第2期125-133,共9页
针对TDI推扫型光学遥感载荷在轨工作时可能出现的垂轨或沿轨方向图像质量下降现象,提出一种基于在轨MTF测试的单方向可定量图像质量提升方法。首先,采用刃边法测试得到沿轨和垂轨两个方向的MTF曲线,选取从零频到奈奎斯特频率范围内的n... 针对TDI推扫型光学遥感载荷在轨工作时可能出现的垂轨或沿轨方向图像质量下降现象,提出一种基于在轨MTF测试的单方向可定量图像质量提升方法。首先,采用刃边法测试得到沿轨和垂轨两个方向的MTF曲线,选取从零频到奈奎斯特频率范围内的n个不同频率点,根据MTF目标值与实测值的比值确定各选定频率点的MTF提升倍数,依据频域响应特性并以提升倍数作为频域响应幅值构建空域卷积函数,同时结合在轨实测信噪比(Signal to Noise Ratio,SNR)构建抑噪函数,在确保SNR的前提下实现的MTF的定量提升。根据在轨试验验证结果表明,按照所提方法进行图像质量提升,在噪声抑制阈值0.5 dB范围内,垂轨方向MTF基本不变,沿轨方向奈奎斯特频率点的MTF提升2.51倍,获取的图像清晰度提升8.33%,证明该方法可有效实现定量图像质量提升。 展开更多
关键词 在轨MTF测试 可定量 图像质量提升 光学遥感
下载PDF
对象级时空融合模型在NDVI和LST的应用分析—以大理地区为例
18
作者 高雍乐 常金生 +1 位作者 杨永崇 王涛 《航天返回与遥感》 CSCD 北大核心 2024年第3期51-61,共11页
过去几十年中,时空融合技术为实现长时间序列观测提供了一种经济高效的方法,但此类方法对结构信息的保留能力较弱,同时计算的效率也比较低。该研究对比分析主流时空融合方法与对象级(Object Level,OL)时空融合方法,在归一化植被指数(ND... 过去几十年中,时空融合技术为实现长时间序列观测提供了一种经济高效的方法,但此类方法对结构信息的保留能力较弱,同时计算的效率也比较低。该研究对比分析主流时空融合方法与对象级(Object Level,OL)时空融合方法,在归一化植被指数(NDVI)和地表温度(LST)的融合效果和融合效率的差异。文章以大理地区作为研究区,使用9种时空融合方法对Landsat和MODIS数据做融合处理,通过目视判别和统计分析,评估其在时空模拟效果和计算效率上的差异。实验表明:1)OL-FSDAF2.0(Object Level-Flexible Spatiotemporal Data Fusion 2.0)相较于其他时空融合方法更好地恢复了地表真实信息和结构信息;2)对象级时空融合方法在计算效率方面比其余像素级时空融合方法提高20.70倍;3)对象级时空融合方法对地物时间动态特征细节的捕捉能力均比像素级时空融合方法高。总的来说,对象级时空融合方法具有较高的计算效率和更精确的融合效果,其中,OL-FSDAF2.0在复杂地表区域与模拟地表覆盖动态变化中表现较好。 展开更多
关键词 结构信息 图像质量评价 结构相似度 遥感应用
下载PDF
利用改进型遥感生态指数的岩溶区生态环境质量评价
19
作者 焦晓萌 张兵 +3 位作者 高阳 郑铭轩 周岩 况玮婕 《测绘通报》 CSCD 北大核心 2024年第4期54-60,共7页
本文选取绿度(NDMVI)、湿度(Wet)、石漠化(RDI)和热度(LST)4个指数,构建了改进型遥感生态指数(IRSEI),以实现县域岩溶地区的生态环境质量评价。基于2003与2023年的县域尺度遥感影像与其他地理信息数据,通过若干方面定量对比IRSEI与RSEI... 本文选取绿度(NDMVI)、湿度(Wet)、石漠化(RDI)和热度(LST)4个指数,构建了改进型遥感生态指数(IRSEI),以实现县域岩溶地区的生态环境质量评价。基于2003与2023年的县域尺度遥感影像与其他地理信息数据,通过若干方面定量对比IRSEI与RSEI指数。结果表明,IRSEI包含了更丰富的山地植被与石漠化状况信息,能够更好地表征和评价岩溶地区生态环境质量,适合作为岩溶地区生态环境质量评价的定量指标。研究区在2003—2023年间,生态环境质量改善和退化情况均有发生,但生态环境质量总体下降了7.46%,生态等级由良变为中等。从空间分布来看,罗平县研究区生态质量差的区域主要分布在北部,生态环境质量优的区域主要分布在中部。 展开更多
关键词 改进型遥感生态指数 岩溶区 生态环境质量评价 绿度指数 石漠化指数
下载PDF
基于遥感的区域生态环境质量评价研究综述
20
作者 陈荧铃 林冬凤 +3 位作者 黄淑满 王祺 罗倩 叶博雯 《广东化工》 CAS 2024年第12期127-129,共3页
当前,卫星遥感对地观测技术以其宏观、快速、实时的优势在生态环境质量评价领域得到广泛应用。本研究梳理了国内外区域生态环境质量评价的发展,介绍了评价程序中指标权重的确定方法及生态环境质量评价方法的选择,并对其中的指数法展开... 当前,卫星遥感对地观测技术以其宏观、快速、实时的优势在生态环境质量评价领域得到广泛应用。本研究梳理了国内外区域生态环境质量评价的发展,介绍了评价程序中指标权重的确定方法及生态环境质量评价方法的选择,并对其中的指数法展开延伸讨论。研究表明,基于遥感的区域生态环境质量评价方法主要有模糊综合评价法、物元分析评价法、指数评价法等,其中综合指数评价法应用最广。评价过程中指标体系权重确定主要有主成分分析法、层次分析法及熵值法,其中主成分分析法因不受人为主观因素影响最为客观。 展开更多
关键词 生态环境质量 遥感 分析方法 指数法 研究综述
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部