In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results ...In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.展开更多
Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify th...Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.展开更多
There is an increasing concern for potentially hazardous metals pollution, which can threaten crops production and human health. In this study, the spatial distribution and environmental risks of eight heavy metals in...There is an increasing concern for potentially hazardous metals pollution, which can threaten crops production and human health. In this study, the spatial distribution and environmental risks of eight heavy metals in surface soil samples collected from the paddy fields in Yongshuyu irrigation area, Northeast China were investigated. The mean concentrations of Pb, Cr, Cu, Ni, Zn, Cd, Hg and As were 34.6 ± 4.67, 82.8 ± 9.51, 17.3 ± 4.09, 21.2 ± 12.0, 88.6 ± 17.9, 0.18 ± 0.15, 0.22 ± 0.07 and 8.77 ± 2.47 mg/kg, respectively, which were slightly higher than their corresponding background values of Jilin Province, indicating enrichment of these metals in the paddy soils, especially for Ni, Cd and Hg. The spatial distribution of heavy metals was closely correlated with local anthropogenic activities, such as agricultural production, mining and transportation. The hot-spot areas of As and Cd were mainly concentrated in the up-midstream where were associated with agricultural activities. Cr and Cu showed similar spatial distributions with hot-spot areas distributed the whole irrigation area uniformly. Ni was mainly distributed in the downstream where Ni quarries concentrated, while the spatial distribution patterns of Hg was mainly located in the upstream and downstream where the soil was significantly influenced by irrigation and coal mining emission. The spatial distributions of Pb and Zn were mainly concentrated along the highway side. The pollution levels of Yongshuyu irrigation area were estimated through index of geo-accumulation(Igeo), Nemerow integrated pollution index(NIPI) and potential ecological risk index(PERI). The results showed that Cd and Hg were the main pollutants in the study area. Health risk assessment results indicated that children were in higher non-carcinogenic and carcinogenic risks than adults with the carcinogenic metal of As. Ingestion was the main exposure pathway to non-carcinogenic and carcinogenic risk for both adults and children. Principal component analysis(PCA) indicated that Cr and Cu were mainly from parent materials, while Cd and As were mainly affected by agricultural activities. Pb and Zn were controlled by traffic activities, and the accumulations of Ni and Hg were associated with mining activities. This study would be valuable for preventing heavy metals inputs and safety in rice production of the Songhua river basin.展开更多
This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast Chi...This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast China. In total, 36 pore water samples and 18 surface water samples from three typical sections were collected and analyzed in June 2009. Cluster analysis of heavy metals was performed to analyze the pollution sources of the metals. Results showed that Hg concentrations in the pore water were greater than those in the surface water, indicating a potential ability of Hg release from riparian sediment system to river water. However, concentrations of Fe and Mn in the surface water were greater than those in the pore water, demonstrating that the microenvironments of riparian and riverbed sediment systems were quite different. Variations of Zn, Cu, Pb and Ni between the surface and the pore water were different in each section. Most metals had similar horizontal and profile distribution characteristics in the three sections except for Zn and Ni. Hg, Fe and Mn concentrations in the pore water increased gradually with the increase in horizontal distance from water body, in contrast to this, Cu decreased, and Pb presented a fluctuating trend. With the increase in depth, Pb and Fe, Cu and Mn showed the same trends, and Hg showed a variable trend. The above distribution characteristics could mainly be attributed to the properties and the interactions of metals, pH and oxidation-reduction conditions, and the complex pollution sources and hydrologic regime in history. The probable sources of metals include the historical and ongoing discharge of industrial wastewater, mining activities, sewage irrigation for agricultural production, and atmospheric deposition from coal-fired plants.展开更多
Sixty sediment samples were collected from the main Songhua River in three years. Twelve polybrominated diphenyl ether( PBDE) congeners( BDE17,28,47,66,99,100,153,154,138,183,and BDE-209) were detected to state the po...Sixty sediment samples were collected from the main Songhua River in three years. Twelve polybrominated diphenyl ether( PBDE) congeners( BDE17,28,47,66,99,100,153,154,138,183,and BDE-209) were detected to state the pollution situation. The results showed that the total concentration of total PBDEs ranges from 0. 424 to 23. 0 ng / g dry weight,with the mean of 3. 02 ng / g,and the total PBDEs concentration is at relative low level compared with those worldwide. The congener profile showed that BDE-209 is the dominant congener that accounts for more than 80. 1% of total PBDEs in sediments,followed by BDE-47 and BDE-99. These profiles are consistent with a high consumption of Deca-BDEs for the brominated flame retardant market in China. The results of spatial and seasonal observations indicated that local sources,temperature variation, and hydrologic conditions are significant factors on PBDEs concentrations. Hazard quotients suggested that PBDEs pose no potential risk to benthic organisms in detected area at present.展开更多
Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravit...Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.展开更多
The Songhua River,one of the seven major rivers in China,locates in Northeast China with 1897 km long.This study aims to investigate the concentrations,distribution,source apportionment and ecological risk assessment ...The Songhua River,one of the seven major rivers in China,locates in Northeast China with 1897 km long.This study aims to investigate the concentrations,distribution,source apportionment and ecological risk assessment of heavy metals including copper(Cu),zinc(Zn),cadmium(Cd),lead(Pb),nickel(Ni)and chromium(Cr)in main stream and tributaries of the Songhua River in Jilin Province,Northeast China.Surface sediment samples(0–15 cm)were collected from 39 sampling sites in the Songhua River in July 2012.Concentrations of Cu,Zn,Cd,Pb,Ni and Cr were analyzed.The mean concentrations of heavy metals were(24.0±9.2)mg/kg,(59.3±18.0)mg/kg,(4.0±2.1)mg/kg,(39.0±27.9)mg/kg,(18.5±8.6)mg/kg and(56.1±17.6)mg/kg for Cu,Zn,Cd,Pb,Cr and Ni,respectively.The average contents of Cu,Cd,Pb,Cr and Ni were higher than their background values.Higher concentrations of heavy metals were found in the lower reaches with industrial enterprises and cities along the Songhua River.Zn,Pb and Ni might come from industrial sewage and mineral processing,while Cu and Cd were derived from electroplating wastewater and agricultural non-point source sewage.Cr originated from lithogenic sources.The concentrations of Cu,Zn and Cr were below the effect range low(ERL)at all sites,while Cd,Pb and Ni concentrations were detected ranging from ERL to the effect range median(ERM)at more than 15%of samples.Concentrations of Ni exceeded ERM in more than 50%of samples.The mean toxic units of heavy metals in the Songhua River decreased following the order:Cd(6.7)>Pb(2.2)>Ni(1.6)>Cu(0.7)>Cr(0.5)=Zn(0.5).Potential ecological risk index was found to be higher in middle and lower reaches of the Songhua River,where Cd could impose an extremely high ecological risk.展开更多
As the major source of air pollution,sulfur dioxide(S0_(2))emissions have become the focus of global attention.However,existing studies rarely consider spatial effects when discussing the relationship between foreign ...As the major source of air pollution,sulfur dioxide(S0_(2))emissions have become the focus of global attention.However,existing studies rarely consider spatial effects when discussing the relationship between foreign direct investment(FDI)and S0_(2) emissions.This study took the Yangtze River Delta as the research area and used the spatial panel data of 26 cities in this region for 2004-2017.The study investigated the spatial agglomeration effects and dynamics at work in FDI and S0_(2) emissions by using global and local measures of spatial autocorrelation.Then,based on regression analysis using a results of traditional ordinary least squares(OLS)model and a spatial econometric model,the spatial Durbin model(SDM)with spatial-time effects was adopted to quantify the impact of FDI on S0_(2) emissions,so as to avoid the regression results bias caused by ignoring the spatial effects.The results revealed a significant spatial autocorrelation between FDI and S0_(2) emissions,both of which displayed obvious path dependence characteristics in their geographical distribution.A series of agglomeration regions were observed on the spatial scale.The estimation results of the SDM showed that FDI inflow promoted S0_(2) emissions,which supports the pollution haven hypothesis.The findings of this study are significant in the prevention and control of air pollution in the Yangtze River Delta.展开更多
Atmospheric CO2 concentration (CC) near land surface and meteorological variables have been measured at four sites, named Yeniugou (alpine meadow and permafrost), Xishui (mountainous forest), Linze (oasis edge...Atmospheric CO2 concentration (CC) near land surface and meteorological variables have been measured at four sites, named Yeniugou (alpine meadow and permafrost), Xishui (mountainous forest), Linze (oasis edge) and Ejina (lower desert), respectively, in Heihe River Basin, northwest China. The results showed that, the half hourly CC at night was larger than in daytime, and the daily averaged CC was the largest in winter. The averaged CC of 932 d at the Linze was about 418 ppm, was about 366 ppm in the 762 d at the Ejina. In the same period from September 23 to November 9, 2004, the averaged CC was about 625,334, 436 and 353 ppm, at Yeniugou, Xishui, Linze and Ejina, respectively. The linear relationship between daily averaged CC and air temperature T was negative, between CC and relative humidity (RH) was positive. The linear CC-atmospheric pressure (A P) relationship was negative at the Linze and Yeniugou, was positive at the Ejina. The relationship between CC and global radiation R was exponent, and soil temperature Ts was negative linear, and soil water content was complex. The correlation between CC and wind speed was not existent. Using meteorological variables together to simulate CC, could give good results.展开更多
An accidental discharge of nitrobenzene happened in November 2005 in the Songhua River,China.The AQUATOX model was modified and adapted to simulate the time-dependent nitrobenzene distribution in this multimedia aquat...An accidental discharge of nitrobenzene happened in November 2005 in the Songhua River,China.The AQUATOX model was modified and adapted to simulate the time-dependent nitrobenzene distribution in this multimedia aquatic system and its potential ecological impacts.Nitrobenzene concentrations in flowing water,sediment,and biota were predicted.Based on the initial concentrations of nitrobenzene observed in the field during the accidental discharge,that is,0.167-1.47 mg/L at different river segments, the predic...展开更多
More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Ji...More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Jilin City on November 13,2005.As one of the efforts to predict the fate of residual NB in the river,NB biodegradation abilities by microbes in the water and sediments from different river sections were evaluated systematically.The results indicated that microbial communities from any section of ...展开更多
基金supported by the Application Foundation Item of Science and Technology Department of Jilin Province (Grant No. 2011-05013)the National Natural Science Foundation of China (Grant No. 50879028)
文摘In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2004CB418502,No. 2007CB407205)the Knowledge Innovation Programs of Chinese Academy of Sciences (No. KSCX1-YW-09-13)
文摘Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.
基金Under the auspices of ‘One-Three-Five’ Strategic Planning Principles of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.IGA-135-08)Research Foundation for Talents of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.Y6H1211001)+1 种基金National Natural Science Foundation(No.41701372)Jilin Provincial Natural Science Fund Subject(No.20180101318JC)
文摘There is an increasing concern for potentially hazardous metals pollution, which can threaten crops production and human health. In this study, the spatial distribution and environmental risks of eight heavy metals in surface soil samples collected from the paddy fields in Yongshuyu irrigation area, Northeast China were investigated. The mean concentrations of Pb, Cr, Cu, Ni, Zn, Cd, Hg and As were 34.6 ± 4.67, 82.8 ± 9.51, 17.3 ± 4.09, 21.2 ± 12.0, 88.6 ± 17.9, 0.18 ± 0.15, 0.22 ± 0.07 and 8.77 ± 2.47 mg/kg, respectively, which were slightly higher than their corresponding background values of Jilin Province, indicating enrichment of these metals in the paddy soils, especially for Ni, Cd and Hg. The spatial distribution of heavy metals was closely correlated with local anthropogenic activities, such as agricultural production, mining and transportation. The hot-spot areas of As and Cd were mainly concentrated in the up-midstream where were associated with agricultural activities. Cr and Cu showed similar spatial distributions with hot-spot areas distributed the whole irrigation area uniformly. Ni was mainly distributed in the downstream where Ni quarries concentrated, while the spatial distribution patterns of Hg was mainly located in the upstream and downstream where the soil was significantly influenced by irrigation and coal mining emission. The spatial distributions of Pb and Zn were mainly concentrated along the highway side. The pollution levels of Yongshuyu irrigation area were estimated through index of geo-accumulation(Igeo), Nemerow integrated pollution index(NIPI) and potential ecological risk index(PERI). The results showed that Cd and Hg were the main pollutants in the study area. Health risk assessment results indicated that children were in higher non-carcinogenic and carcinogenic risks than adults with the carcinogenic metal of As. Ingestion was the main exposure pathway to non-carcinogenic and carcinogenic risk for both adults and children. Principal component analysis(PCA) indicated that Cr and Cu were mainly from parent materials, while Cd and As were mainly affected by agricultural activities. Pb and Zn were controlled by traffic activities, and the accumulations of Ni and Hg were associated with mining activities. This study would be valuable for preventing heavy metals inputs and safety in rice production of the Songhua river basin.
基金Under the auspices of National Natural Science Foundation of China (No. 40901128, 40771035)Knowledge Innova-tion Programs of Chinese Academy of Sciences (No. KZCX2-YW-Q06-03)
文摘This study reports the geochemical characteristics of zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), iron (Fe), and manganese (Mn) in the riparian sediment pore water of the Songhua River, Northeast China. In total, 36 pore water samples and 18 surface water samples from three typical sections were collected and analyzed in June 2009. Cluster analysis of heavy metals was performed to analyze the pollution sources of the metals. Results showed that Hg concentrations in the pore water were greater than those in the surface water, indicating a potential ability of Hg release from riparian sediment system to river water. However, concentrations of Fe and Mn in the surface water were greater than those in the pore water, demonstrating that the microenvironments of riparian and riverbed sediment systems were quite different. Variations of Zn, Cu, Pb and Ni between the surface and the pore water were different in each section. Most metals had similar horizontal and profile distribution characteristics in the three sections except for Zn and Ni. Hg, Fe and Mn concentrations in the pore water increased gradually with the increase in horizontal distance from water body, in contrast to this, Cu decreased, and Pb presented a fluctuating trend. With the increase in depth, Pb and Fe, Cu and Mn showed the same trends, and Hg showed a variable trend. The above distribution characteristics could mainly be attributed to the properties and the interactions of metals, pH and oxidation-reduction conditions, and the complex pollution sources and hydrologic regime in history. The probable sources of metals include the historical and ongoing discharge of industrial wastewater, mining activities, sewage irrigation for agricultural production, and atmospheric deposition from coal-fired plants.
文摘基于Sentinel-5P卫星TROPOMI数据,利用随机森林方法反演2018~2020年淮河流域地面NO_(2)浓度,采用推算法获得淮河流域2018~2020年NO_(2)干沉降通量,并通过划分不同集水区(水域、农田、城区和植被覆盖区)估算大气NO_(2)干沉降对淮河流域水体氮素的贡献.结果显示,卫星反演地面NO_(2)浓度与地面站点实测资料一致性较高,相关系数(R)为0.94,平均绝对误差(MAE)为2.7,均方根误差(RSME)为4.1.淮河流域地面NO_(2)浓度和NO_(2)干沉降通量均有明显的季节变化,春夏秋冬4个季节地面NO_(2)平均浓度分别为13.7,12.2,17.6,23.1μg/m^(3);NO_(2)平均干沉降通量分别为1.25,1.13,1.61,2.13kg N/(hm^(2)·a).淮河流域地面NO_(2)浓度和干沉降通量均表现为南北部高,东西部低.农田区域NO_(2)干沉降对流域水体氮素的贡献最大,占比83.47%.2019年淮河流域大气NO_(2)干沉降总量为1.34×10^(5)t,对水体氮素的贡献为1.36×10^(4)t N;2020年大气NO_(2)干沉降总量为1.25×10^(5)t,对水体氮素的贡献为1.18×10^(4)t N.
基金Sponsored by the National Natural Science Foundation of China(Grant No.21277038)
文摘Sixty sediment samples were collected from the main Songhua River in three years. Twelve polybrominated diphenyl ether( PBDE) congeners( BDE17,28,47,66,99,100,153,154,138,183,and BDE-209) were detected to state the pollution situation. The results showed that the total concentration of total PBDEs ranges from 0. 424 to 23. 0 ng / g dry weight,with the mean of 3. 02 ng / g,and the total PBDEs concentration is at relative low level compared with those worldwide. The congener profile showed that BDE-209 is the dominant congener that accounts for more than 80. 1% of total PBDEs in sediments,followed by BDE-47 and BDE-99. These profiles are consistent with a high consumption of Deca-BDEs for the brominated flame retardant market in China. The results of spatial and seasonal observations indicated that local sources,temperature variation, and hydrologic conditions are significant factors on PBDEs concentrations. Hazard quotients suggested that PBDEs pose no potential risk to benthic organisms in detected area at present.
基金National Key Technologies R&D Program(No.2012BAD22B04)Talent Introduction Project of Jilin Province
文摘Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.
基金Under the auspices of the National Natural Science Foundation of China(No.42077343)the Major Science and Technology Program for Water Pollution Control and Treatment in China(No.2009ZX07207-001-03)+1 种基金the Science and Technology Development Program of Jilin Province(No.20200403020SF)the Natural Science Foundation of Changchun Normal University(No.2019009)。
文摘The Songhua River,one of the seven major rivers in China,locates in Northeast China with 1897 km long.This study aims to investigate the concentrations,distribution,source apportionment and ecological risk assessment of heavy metals including copper(Cu),zinc(Zn),cadmium(Cd),lead(Pb),nickel(Ni)and chromium(Cr)in main stream and tributaries of the Songhua River in Jilin Province,Northeast China.Surface sediment samples(0–15 cm)were collected from 39 sampling sites in the Songhua River in July 2012.Concentrations of Cu,Zn,Cd,Pb,Ni and Cr were analyzed.The mean concentrations of heavy metals were(24.0±9.2)mg/kg,(59.3±18.0)mg/kg,(4.0±2.1)mg/kg,(39.0±27.9)mg/kg,(18.5±8.6)mg/kg and(56.1±17.6)mg/kg for Cu,Zn,Cd,Pb,Cr and Ni,respectively.The average contents of Cu,Cd,Pb,Cr and Ni were higher than their background values.Higher concentrations of heavy metals were found in the lower reaches with industrial enterprises and cities along the Songhua River.Zn,Pb and Ni might come from industrial sewage and mineral processing,while Cu and Cd were derived from electroplating wastewater and agricultural non-point source sewage.Cr originated from lithogenic sources.The concentrations of Cu,Zn and Cr were below the effect range low(ERL)at all sites,while Cd,Pb and Ni concentrations were detected ranging from ERL to the effect range median(ERM)at more than 15%of samples.Concentrations of Ni exceeded ERM in more than 50%of samples.The mean toxic units of heavy metals in the Songhua River decreased following the order:Cd(6.7)>Pb(2.2)>Ni(1.6)>Cu(0.7)>Cr(0.5)=Zn(0.5).Potential ecological risk index was found to be higher in middle and lower reaches of the Songhua River,where Cd could impose an extremely high ecological risk.
基金Under the auspices of National Natural Science Foundation of China(No.41771140)National Key R&D Program of China(No.2018YFE0105900)。
文摘As the major source of air pollution,sulfur dioxide(S0_(2))emissions have become the focus of global attention.However,existing studies rarely consider spatial effects when discussing the relationship between foreign direct investment(FDI)and S0_(2) emissions.This study took the Yangtze River Delta as the research area and used the spatial panel data of 26 cities in this region for 2004-2017.The study investigated the spatial agglomeration effects and dynamics at work in FDI and S0_(2) emissions by using global and local measures of spatial autocorrelation.Then,based on regression analysis using a results of traditional ordinary least squares(OLS)model and a spatial econometric model,the spatial Durbin model(SDM)with spatial-time effects was adopted to quantify the impact of FDI on S0_(2) emissions,so as to avoid the regression results bias caused by ignoring the spatial effects.The results revealed a significant spatial autocorrelation between FDI and S0_(2) emissions,both of which displayed obvious path dependence characteristics in their geographical distribution.A series of agglomeration regions were observed on the spatial scale.The estimation results of the SDM showed that FDI inflow promoted S0_(2) emissions,which supports the pollution haven hypothesis.The findings of this study are significant in the prevention and control of air pollution in the Yangtze River Delta.
文摘Atmospheric CO2 concentration (CC) near land surface and meteorological variables have been measured at four sites, named Yeniugou (alpine meadow and permafrost), Xishui (mountainous forest), Linze (oasis edge) and Ejina (lower desert), respectively, in Heihe River Basin, northwest China. The results showed that, the half hourly CC at night was larger than in daytime, and the daily averaged CC was the largest in winter. The averaged CC of 932 d at the Linze was about 418 ppm, was about 366 ppm in the 762 d at the Ejina. In the same period from September 23 to November 9, 2004, the averaged CC was about 625,334, 436 and 353 ppm, at Yeniugou, Xishui, Linze and Ejina, respectively. The linear relationship between daily averaged CC and air temperature T was negative, between CC and relative humidity (RH) was positive. The linear CC-atmospheric pressure (A P) relationship was negative at the Linze and Yeniugou, was positive at the Ejina. The relationship between CC and global radiation R was exponent, and soil temperature Ts was negative linear, and soil water content was complex. The correlation between CC and wind speed was not existent. Using meteorological variables together to simulate CC, could give good results.
文摘An accidental discharge of nitrobenzene happened in November 2005 in the Songhua River,China.The AQUATOX model was modified and adapted to simulate the time-dependent nitrobenzene distribution in this multimedia aquatic system and its potential ecological impacts.Nitrobenzene concentrations in flowing water,sediment,and biota were predicted.Based on the initial concentrations of nitrobenzene observed in the field during the accidental discharge,that is,0.167-1.47 mg/L at different river segments, the predic...
文摘More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River,the fourth longest river in China,because of the world-shaking explosion of an aniline production factory located in Jilin City on November 13,2005.As one of the efforts to predict the fate of residual NB in the river,NB biodegradation abilities by microbes in the water and sediments from different river sections were evaluated systematically.The results indicated that microbial communities from any section of ...