The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To addres...Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To address this issue,we investigated the spectral characteristics of DOM before and after Typhoon Ewiniar in Zhanjiang B ay,a eutrophic semi-enclosed bay in the northwestern South China Sea.The results revealed that intense microbial decomposition of DOM occurred during the pre-typhoon period because high nutrient inputs facilitated the mobilization of DOM in the bay.However,the intrusion of external seawater induced by the typhoon diluted the nutrient levels in Zhanjiang B ay,reducing the impact of microbial decomposition on DOM during the post-typhoon perio d.Nevertheless,the net addition of DOM occurred in Zhanjiang Bay during the post-typhoon period,possibly because of the decomposition of particulate organic matter(POM) and desorption of particulate matter.In addition,an increase in apparent oxygen utilization,a decrease in DO saturation and the reduced level of Chl a indicated that organic matter(OM) decomposition was enhanced and OM decomposition shifted to POM decomposition in Zhanjiang Bay after the typhoon.Overall,our study highlighted the shift in the intense OM decomposition from DOM to POM decomposition before and after typhoons in eutrophic bays,providing new insights into the response of typhoons to biogeo chemistry.展开更多
The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
Using typhoon data over the Northwestern Pacific (NWP) in 60 years (1950-2009), the interdecadal variations of typhoon frequency, track and intensity are statistically analyzed. The results showed that the frequen...Using typhoon data over the Northwestern Pacific (NWP) in 60 years (1950-2009), the interdecadal variations of typhoon frequency, track and intensity are statistically analyzed. The results showed that the frequency of typhoon over the NWP was high in 1960s and low in 1970s. From the late 1990s, the frequency is low again. The track of typhoon was mainly shifting, and the average track was at the southern NWP in 1960s and 1970s, but in recent 10 years, the track was at the northern NWP. The intensity of typhoon was strong in 1950s and 1960s, but becomes weak in recent 25 years. In high frequency periods of typhoon, the subtropical high of NWP was weak and its position appears easternly. The distribution of Sea Surface Temperature (SST) shows characteristics of "La Nina" event. In low frequency periods of typhoon, the subtropical high of NWP is strong and its position appears westernly. The distribution of SST shows characteristics of "El Nino" event.展开更多
ABSTRACT Data from the World Wide Lightning Location Network (WWLLN) were used to analyze the lightning activity and the relationship between maximum sustained wind and lightning rate in 69 tropical cyclones over t...ABSTRACT Data from the World Wide Lightning Location Network (WWLLN) were used to analyze the lightning activity and the relationship between maximum sustained wind and lightning rate in 69 tropical cyclones over the Northwest Pacific Ocean from 2005 to 2009. The minimum lightning density was observed in the category 2 typhoon Kong-Rey (2007), with a value of only 1.15 d-1 (100 kin)-2. The maximum lightning density occurred in the category 2 typhoon Mitag (2007), with a value of 510.42 d-1 (100 km)-2. The average lightning density decreased with radius from the typhoon center in both weak (categories 1-3) and super (categories 4-5) typhoons. The average lightning density in the inner core of super typhoons was more than twice as large as that for weak typhoons. Both groups of typhoons showed a near-monotonic decrease in lightning density with radius. Results also showed that lightning activity was more active in typhoons that made landfall than in those that did not. The mean correlation coefficient between the accumulated flashes within a 600-kin radius and the maximum wind speed in the weak typhoons and super typhoons was 0.81 and 0.74, respectively. For more than 78% (56%) of the super (weak) typhoons, the lightning activity peaked before the maximum sustained wind speed, with the most common leading time being 30 (60) h. The results suggest that, for the Northwest Pacific Ocean, lightning activity might be used as a measurement of the intensification of typhoons.展开更多
In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nes...In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nesat passed the array. The associated near-inertial currents are surface-intensified and clockwise-polarized. The vertical range of NIWs reached 300 m, where the vertical range is defined as the maximum depth of the horizontal near-inertial velocity 5 cm/s. The current oscillations have a frequency of 0.709 9 cycles per day(cpd), which is 0.025 f higher than the local inertial frequency. The NIWs have an e-folding time-scale of 10 d based on the evolution of the near-inertial kinetic energy. The depth-leading phase of near-inertial currents indicates downward group velocity and energy flux. The estimated vertical phase velocity and group velocity are 0.27 and 0.08 cm/s respectively, corresponding to a vertical wavelength of 329 m. A spectral analysis reveals that NIWs act as a crucial process to redistribute the energy injected by Typhoon Nesat. A normal mode and an empirical orthogonal function analysis indicate that the second mode has a dominant variance contribution of 81%, and the corresponding horizontal phase velocity and wavelength are 3.50 m/s and 420 km respectively. The remarkable large horizontal phase velocity is relevant to the rotation of the earth, and a quantitative analysis suggests that the phase velocity of the NIWs with a blue-shift of 0.025 f overwhelms that of internal gravity waves by a factor of 4.6.展开更多
Features of near-inertial motions on the shelf (60 m deep) of the northern South China Sea were observed under the passage of two typhoons during the summer of 2009. There are two peaks in spectra at both sub-inerti...Features of near-inertial motions on the shelf (60 m deep) of the northern South China Sea were observed under the passage of two typhoons during the summer of 2009. There are two peaks in spectra at both sub-inertial and super-inertial frequencies. The super-inertial energy maximizes near the surface, while the sub-inertial energy maximizes at a deeper layer of 15 m. The sub-inertial shift of frequency is induced by the negative background vorticity. The super-inertial shift is probably attributed to the near-inertial wave propagating from higher latitudes. The near-inertial currents exhibit a two-layer pattern being separated at mid-depth (25-30 m), with the phase in the upper layer being nearly opposite to that in the lower layer. The vertical propagation of phase implies that the near-inertial energy is not dominantly downward. The upward flux of the near-inertial energy is more evident at the surface layer (〈17 m). There exist two boundaries at 17 and 40 rn, where the near-inertial energy is reflected upward and downward. The near-inertial motion is intermittent and can reach a peak of as much as 30 cm/s. The passage of Typhoon Nangka generates an intensive near-inertial event, but Typhoon Linfa does not. This difference is attributed to the relative moor- ing locations, which is on the right hand side of Nangka's path (leading to a wind pattern rotating clockwise with time) and is on the left hand side of Linfa's path (leading to a wind pattern rotating anti-clockwise with time).展开更多
The precipitation during landfall of typhoon Haitang (2005) showed asymmetric structures (left side/right side of the track). Analysis of Weather Research and Forecasting model simulation data showed that rainfall...The precipitation during landfall of typhoon Haitang (2005) showed asymmetric structures (left side/right side of the track). Analysis of Weather Research and Forecasting model simulation data showed that rainfall on the right side was more than 15 times stronger than on the left side. The causes were analyzed by focusing on comparing the water vapor flux, stability and upward motion between the two sides. The major results were as follows: (1) Relative humidity on both sides was over 80%, whereas the convergence of water vapor flux in the lower troposphere was about 10 times larger on the right side than on the left side. (2) Both sides featured conditional symmetric instability [MPV (moist potential vorticity) 〈0], but the right side was more unstable than the left side. (3) Strong (weak) upward motion occurred throughout the troposphere on the right (left) side. The Q vector diagnosis suggested that large-scale and mesoscale forcing accounted for the difference in vertical velocity. Orographic lift and surface friction forced the development of the asymmetric precipitation pattern. On the right side, strong upward motion from the forcing of different scale weather systems and topography caused a substantial release of unstable energy and the transportation of water vapor from the lower to the upper troposphere, which produced torrential rainfall. However, the above conditions on the left side were all much weaker, which led to weaker rainfall. This may have been the cause of the asymmetric distribution of rainfall during the landfall of typhoon Haitang.展开更多
Leveraging the commercial CFD software FLUENT,the fine-scale three-dimensional wind structure over the Paiya Mountains on the Dapeng Peninsula near Shenzhen,a city on the seashore of South China Sea,during the landfal...Leveraging the commercial CFD software FLUENT,the fine-scale three-dimensional wind structure over the Paiya Mountains on the Dapeng Peninsula near Shenzhen,a city on the seashore of South China Sea,during the landfall of Typhoon Molave has been simulated and analyzed.Through the study,a conceptual wind structure model for mountainous areas under strong wind condition is established and the following conclusions are obtained as follows:(1)FLUENT can reasonably simulate a three-dimensional wind structure over mountainous areas under strong wind conditions;(2)the kinetic effect of a mountain can intensify wind speed in the windward side of the mountain and the area over the mountain peak;and(3)in the leeward side of the mountain,wind speed is relatively lower with relatively stronger wind shear and turbulence.展开更多
Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observationa...Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.展开更多
With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b...With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b induced by passages of typhoons or tropical storms. This study compares characteristics of the three NIO events. Event 2008a was the strongest one among the three, and had the longest sustaining period (15 d), while events 2009a and 2009b sustained for only 4 and 8 d, respectively. The three events were distinguished by vertical energy distribution and phase propagation. As for the frequency shift of the NIO, event 2008a had a peak frequency lower than the local Coriolis frequency (red-shift), while events 2009a and 2009b showed blue-shift. The behavior of individual NIO event is jointly decided by the typhoon disturbance and the background ocean condition. Especially the background flow plays an important role by effects of advection and modulation. The results in this study provide observational evidence of variational NIO response to background flow field. As indicated by the distribution of vorticity and effective Coriolis frequency derived from numerical modeling, the large amplitude and elongated sustaining period of event 2008a were attributed to the waveguide effect of the background shear flow. This effect redistributed the NIO energy after the typhoon passage, absorbed incident waves and trapped energy in the area of the negative vorticity. While the background flow during events 2009a and 2009b did not have such effects due to the near-zero vorticity in the mooring area.展开更多
Based on in-situ observation,satellite and reanalysis data,responses of the western North Pacific subtropical ocean(WNPSO)to the slow-moving category 5 super typhoon Nanmadol in 2011 are analyzed.The dynamical respons...Based on in-situ observation,satellite and reanalysis data,responses of the western North Pacific subtropical ocean(WNPSO)to the slow-moving category 5 super typhoon Nanmadol in 2011 are analyzed.The dynamical response is dominated by near-inertial currents and Ekman currents with maximum amplitude of 0.39m/s and 0.15m/s,respectively.The near-inertial currents concentrated around 100m below the sea surface and had an e-folding timescale of 4 days.The near-inertial energy propagated both upward and downward,and the vertical phase speed and wavelength were estimated to be 5m/h and 175m,respectively.The frequency of the near-inertial currents was blue-shifted near the surface and redshifted in ocean interior which may relate to wave propagation and/or background vorticity.The resultant surface cooling reaches-4.35℃ and happens when translation speed of Nanmadol is smaller than 3.0m/s.When Nanmadol reaches super typhoon intensity,the cooling is less than 3.0℃ suggesting that the typhoon translation speed plays important roles as well as typhoon intensity in surface cooling.Upwelling induced by the slow-moving typhoon wind leads to typhoon track confined cooling area and the right-hand bias of cooling is slight.The mixed layer cooling and thermocline warming are induced by wind-generated upwelling and vertical entrainment.Vertical entrainment also led to mixed layer salinity increase and thermocline salinity decrease,however,mixed layer salinity decrease occurs at certain stations as well.Our results suggest that typhoon translation speed is a vital factor responsible for the oceanic thermohaline and dynamical responses,and the small Mach number(slow typhoon translation speed)facilitate development of Ekman current and upwelling.展开更多
The upper-ocean responses to Typhoon Megi (2010) are investigated using data from ARGO floats and the satellite TMI. The experiments are conducted using a three-dimensional Princeton Ocean Model (POM) to assess th...The upper-ocean responses to Typhoon Megi (2010) are investigated using data from ARGO floats and the satellite TMI. The experiments are conducted using a three-dimensional Princeton Ocean Model (POM) to assess the storm, which affected the Northwest Pacific Ocean (NWP) and the South China Sea (SCS). Results show that the upwelling and entrainment experiment together account for 93% of the SST anomalies, where typhoon-induced upwelling may cause strong ocean cooling. In addition, the anomalous SST cooling is stronger in the SCS than in the NWP. The most striking feature of the ocean response is the presence of a two-layer inertial wave in the SCS--a feature that is absent in the NWE The near-inertial oscillations can be generated as typhoon wakes, which have maximum flow velocity in the surface mixed layer and may last for a few days, after the typhoon's passage. Along the typhoon tracks, the horizontal currents in the upper ocean show a series of alternating negative and positive anomalies emanating from the typhoon.展开更多
This study examined the characteristics and vertical propagation of near inertial waves(NIWs)induced by Typhoon Linfa(2015),based on in situ observations conducted southeast of Dongsha Islands in the South China Sea.T...This study examined the characteristics and vertical propagation of near inertial waves(NIWs)induced by Typhoon Linfa(2015),based on in situ observations conducted southeast of Dongsha Islands in the South China Sea.The results demonstrate that the near inertial currents induced by Linfa had velocities up to 35 cm s^-1 in the mixed layer and 20 cm s^-1 in the ocean interior.The near inertial currents were polarized with predominantly clockwise-rotating components,the magnitudes of which were about 10 times larger than the counter-clockwise rotating components.The energy density spectrum showed that the emergence of NIWs resulted in energy redistribution from the diurnal band to the near inertial band.The wavenumber spectrum and the downward/upward current decomposition demonstrated that the NIWs and energy flux propagated mainly downward.The estimated vertical phase velocity and group velocity are 1.44 and 0.48 m h-1,respectively,corresponding to a vertical wavelength of 49.7 m.The e-folding time scale was 7.5 d based on the near inertial kinetic energy in the ocean interior.We found no obvious wave–wave interaction during the decay process of the NIWs.The frequency was blue-shifted,being 0.03 f0 higher than the local inertial frequency,which was caused by the background vorticity.The normal mode analysis suggests that the higher mode plays a dominant role in the propagation stage of the NIWs.展开更多
It is of vital importance to reduce injuries and economic losses by accurate forecasts of typhoon tracks. A huge amount of typhoon observations have been accumulated by the meteorological department, however, they are...It is of vital importance to reduce injuries and economic losses by accurate forecasts of typhoon tracks. A huge amount of typhoon observations have been accumulated by the meteorological department, however, they are yet to be adequately utilized. It is an effective method to employ machine learning to perform forecasts. A long short term memory(LSTM) neural network is trained based on the typhoon observations during 1949–2011 in China's Mainland, combined with big data and data mining technologies, and a forecast model based on machine learning for the prediction of typhoon tracks is developed. The results show that the employed algorithm produces desirable 6–24 h nowcasting of typhoon tracks with an improved precision.展开更多
The China-France oceanography satellite(CFOSAT)developed by the China National Space Administration(CNSA)and Centre National D’Etudes Spatiales(CNES)was successfully launched into its orbit on October 29,2018.The Chi...The China-France oceanography satellite(CFOSAT)developed by the China National Space Administration(CNSA)and Centre National D’Etudes Spatiales(CNES)was successfully launched into its orbit on October 29,2018.The Chinese wind scatterometer(SCAT)with swath width of about 1000 km and French wave spectrometer(Surface Wave Investigation and Monitoring,SWIM)with swath width of about 180 km onboard the CFOSAT are in line with all requirements and performing operationally.Thus,it is the first time that CFOSAT provides simultaneous and co-located observations of wind and wave fields with high spatial resolutions of 12.5 km×12.5 km for the winds and 70 km×90 km for the wave directional spectrum.The real-time and large-scale monitoring of wind and wave fields are of great significance for navigation and human activities on the sea(Xu et al.,2010;Tan et al.,2018;Sun et al.,2019),especially during severe typhoon processes when violent winds and hazardous waves occur(Walsh et al.,2002;Zhou et al.,2008).展开更多
Category 5 typhoon Megi was the most intense typhoon in 2010 of the world. It lingered in the South China Sea (SCS) for 5 d and caused a significant phytoplankton bloom detected by the satellite image. In this study...Category 5 typhoon Megi was the most intense typhoon in 2010 of the world. It lingered in the South China Sea (SCS) for 5 d and caused a significant phytoplankton bloom detected by the satellite image. In this study, the authors investigated the ocean biological and physical responses to typhoon Megi by using chlorophyll-a (chl-a) concentration, sea surface temperature (SST), sea surface height anomaly (SSHA), sea surface wind measurements derived from different satellites and in situ data. The chl-a concentration (〉3 mg/m3) increased thirty times in the SCS after the typhoon passage in comparison with the mean level of October averaged from 2002 to 2009. With the relationship of wind stress curl and upwelling, the authors found that the speed of upwelling was over ten times during typhoon than pre-typhoon period. Moreover, the mixed layer deepened about 20 m. These reveal that the enhancement of chl-a concentration was triggered by strong vertical mixing and upwelling. Along the track of typhoon, the maximum sea surface cooling (6-8~C) took place in the SCS where the moving speed of typhoon was only 1.4-2.8 m/s and the mixed layer depth was about 20 m in pre-typhoon period. However, the SST drop at the east of the Philippines is only 1-2~C where the translation speed of typhoon was 5.5-6.9 m/s and the mixed layer depth was about 40 m in pre-typhoon period. So the extent of the SST drop was probably due to the moving speed of typhoon and the depth of the mixed layer. In addition, the region with the largest decline of the sea surface height anomaly can indicate the location where the maximum cooling occurs.展开更多
This study deals with a unusual cooling event after Typhoon Mujigea passed over the northern South China Sea(SCS) in October 2015. We analyze the satellite sea surface temperature(SST) time series from October 3 to 18...This study deals with a unusual cooling event after Typhoon Mujigea passed over the northern South China Sea(SCS) in October 2015. We analyze the satellite sea surface temperature(SST) time series from October 3 to 18,2015 and find that the cooling process in the coastal ocean had two different stages. The first stage occurred immediately after typhoon passage on October 3, and reached a maximum SST drop of –2℃ on October 7 as the usual cold wake after typhoon. The second stage or the unusual extended cooling event occurred after 7d of the typhoon passage, and lasted for 5d from October 10 to 15. The maximum SST cooling was –4℃ and occurred after 12d of typhoon passage. The mechanism analysis results indicate that after landing and moving northwestward to the Yunnan-Guizhou Plateau(YGP), Typhoon Mujigea(2015) met the westerly wind front on October 5. The lowpressure and positive-vorticity disturbances to the front triggered meridional air flow and low-pressure trough,thus induced a katabatic cold jet downward from the Qinghai-Tibet Plateau(QTP) passing through the YGP to the northwestern SCS. The second cooling reached the maximum SST drop 4d later after the maximum air temperature drop of –9℃ on October 11. The simultaneous air temperature and SST observations at three coastal stations reveal that it is this katabatic cold jet intrusion to lead the unusual SST cooling event.展开更多
Buoy-based observations of wave spectra during the passage of three typhoons in the northern South China Sea are examined.Though most spectra of mature typhoon-generated waves are unimodal,double-peaked spectra accoun...Buoy-based observations of wave spectra during the passage of three typhoons in the northern South China Sea are examined.Though most spectra of mature typhoon-generated waves are unimodal,double-peaked spectra account for a significant proportion during the growing and decaying stages.This is due either to the superposition of swells on local wind waves or to the mechanism of nonlinear interaction between different wave components.The growth rate of energy density is an effective way to predict spectrum variation.The dominant wave direction depends on the location of the typhoon center to the site,but the direction spread shows no regularity in distant regions.In this study,a new six-parameter spectral formula is proposed to represent doublepeaked spectra and is shown to provide a better fit than previous models.The theoretical relationship between shape parameter and spectral width is still applicable to each peak.The characteristics of the variations of spectral parameters are analyzed.It is demonstrated that the spectral parameters are not only related to the typhoon intensity and typhoon track,but also have strong intercorrelations.Moreover,the growth relation between significant wave height and significant wave period is obtained to fit the typhoon-generated waves.展开更多
Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the El Nino and La Nifia events. The result indicates that the typhoon tends to be inactive in...Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the El Nino and La Nifia events. The result indicates that the typhoon tends to be inactive in the El Nifio years and active in the La Nina years and it is also dependent on the onset and ending time and intensity of the events and areas of genesis of typhoons. With statistic features of the frequency of typhoon activity in the El Nifio and La Nina years and the time-lag correlation between the frequency and sea surface temperature (SST). useful information is provided for the prediction of typhoon occurrence. In addition, the singular values disassemble (SVD) method is applied to study the correlation between the geopotential field and SST field. The result shows that the air-sea coupling in the El Nino years is unfavorable for the typhoon to develop, which take place with a smaller number. Opposite situations are found with the La Nina years.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
基金The National Natural Science Foundation of China under contract Nos 42276047, 92158201 and U1901213the Entrepreneurship Project of Shantou under contract No.2021112176541391the Scientific Research Start-Up Foundation of Shantou University under contract No.NTF20006。
文摘Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To address this issue,we investigated the spectral characteristics of DOM before and after Typhoon Ewiniar in Zhanjiang B ay,a eutrophic semi-enclosed bay in the northwestern South China Sea.The results revealed that intense microbial decomposition of DOM occurred during the pre-typhoon period because high nutrient inputs facilitated the mobilization of DOM in the bay.However,the intrusion of external seawater induced by the typhoon diluted the nutrient levels in Zhanjiang B ay,reducing the impact of microbial decomposition on DOM during the post-typhoon perio d.Nevertheless,the net addition of DOM occurred in Zhanjiang Bay during the post-typhoon period,possibly because of the decomposition of particulate organic matter(POM) and desorption of particulate matter.In addition,an increase in apparent oxygen utilization,a decrease in DO saturation and the reduced level of Chl a indicated that organic matter(OM) decomposition was enhanced and OM decomposition shifted to POM decomposition in Zhanjiang Bay after the typhoon.Overall,our study highlighted the shift in the intense OM decomposition from DOM to POM decomposition before and after typhoons in eutrophic bays,providing new insights into the response of typhoons to biogeo chemistry.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.
文摘Using typhoon data over the Northwestern Pacific (NWP) in 60 years (1950-2009), the interdecadal variations of typhoon frequency, track and intensity are statistically analyzed. The results showed that the frequency of typhoon over the NWP was high in 1960s and low in 1970s. From the late 1990s, the frequency is low again. The track of typhoon was mainly shifting, and the average track was at the southern NWP in 1960s and 1970s, but in recent 10 years, the track was at the northern NWP. The intensity of typhoon was strong in 1950s and 1960s, but becomes weak in recent 25 years. In high frequency periods of typhoon, the subtropical high of NWP was weak and its position appears easternly. The distribution of Sea Surface Temperature (SST) shows characteristics of "La Nina" event. In low frequency periods of typhoon, the subtropical high of NWP is strong and its position appears westernly. The distribution of SST shows characteristics of "El Nino" event.
基金supported by the National Natural Science Foundation of China (Grant Nos.41005004 and 40930949)the "One-Hundred Talents Project" of the Chinese Academy of Sciences
文摘ABSTRACT Data from the World Wide Lightning Location Network (WWLLN) were used to analyze the lightning activity and the relationship between maximum sustained wind and lightning rate in 69 tropical cyclones over the Northwest Pacific Ocean from 2005 to 2009. The minimum lightning density was observed in the category 2 typhoon Kong-Rey (2007), with a value of only 1.15 d-1 (100 kin)-2. The maximum lightning density occurred in the category 2 typhoon Mitag (2007), with a value of 510.42 d-1 (100 km)-2. The average lightning density decreased with radius from the typhoon center in both weak (categories 1-3) and super (categories 4-5) typhoons. The average lightning density in the inner core of super typhoons was more than twice as large as that for weak typhoons. Both groups of typhoons showed a near-monotonic decrease in lightning density with radius. Results also showed that lightning activity was more active in typhoons that made landfall than in those that did not. The mean correlation coefficient between the accumulated flashes within a 600-kin radius and the maximum wind speed in the weak typhoons and super typhoons was 0.81 and 0.74, respectively. For more than 78% (56%) of the super (weak) typhoons, the lightning activity peaked before the maximum sustained wind speed, with the most common leading time being 30 (60) h. The results suggest that, for the Northwest Pacific Ocean, lightning activity might be used as a measurement of the intensification of typhoons.
基金The National Natural Science Foundation of China under contract Nos U1133001,41030855 and 41376027the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A502
文摘In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nesat passed the array. The associated near-inertial currents are surface-intensified and clockwise-polarized. The vertical range of NIWs reached 300 m, where the vertical range is defined as the maximum depth of the horizontal near-inertial velocity 5 cm/s. The current oscillations have a frequency of 0.709 9 cycles per day(cpd), which is 0.025 f higher than the local inertial frequency. The NIWs have an e-folding time-scale of 10 d based on the evolution of the near-inertial kinetic energy. The depth-leading phase of near-inertial currents indicates downward group velocity and energy flux. The estimated vertical phase velocity and group velocity are 0.27 and 0.08 cm/s respectively, corresponding to a vertical wavelength of 329 m. A spectral analysis reveals that NIWs act as a crucial process to redistribute the energy injected by Typhoon Nesat. A normal mode and an empirical orthogonal function analysis indicate that the second mode has a dominant variance contribution of 81%, and the corresponding horizontal phase velocity and wavelength are 3.50 m/s and 420 km respectively. The remarkable large horizontal phase velocity is relevant to the rotation of the earth, and a quantitative analysis suggests that the phase velocity of the NIWs with a blue-shift of 0.025 f overwhelms that of internal gravity waves by a factor of 4.6.
基金The National Natural Science Foundation of China under contract Nos 41276006,40976013 and 41121091the China Scholarship Councilthe UK Natural Environment Research Council Programme FASTNEt under contract No.NE/I030259/1
文摘Features of near-inertial motions on the shelf (60 m deep) of the northern South China Sea were observed under the passage of two typhoons during the summer of 2009. There are two peaks in spectra at both sub-inertial and super-inertial frequencies. The super-inertial energy maximizes near the surface, while the sub-inertial energy maximizes at a deeper layer of 15 m. The sub-inertial shift of frequency is induced by the negative background vorticity. The super-inertial shift is probably attributed to the near-inertial wave propagating from higher latitudes. The near-inertial currents exhibit a two-layer pattern being separated at mid-depth (25-30 m), with the phase in the upper layer being nearly opposite to that in the lower layer. The vertical propagation of phase implies that the near-inertial energy is not dominantly downward. The upward flux of the near-inertial energy is more evident at the surface layer (〈17 m). There exist two boundaries at 17 and 40 rn, where the near-inertial energy is reflected upward and downward. The near-inertial motion is intermittent and can reach a peak of as much as 30 cm/s. The passage of Typhoon Nangka generates an intensive near-inertial event, but Typhoon Linfa does not. This difference is attributed to the relative moor- ing locations, which is on the right hand side of Nangka's path (leading to a wind pattern rotating clockwise with time) and is on the left hand side of Linfa's path (leading to a wind pattern rotating anti-clockwise with time).
基金supported by Public Sector (Meteorology) Research of China (Grant Nos.GYHY 201306012 and GYHY201506007)the National Natural Science Foundation of China (Grant Nos.40875025,41175050,41475039 and 41475041)the Shanghai Natural Science Foundation of China (Grant No.08ZR1422900)
文摘The precipitation during landfall of typhoon Haitang (2005) showed asymmetric structures (left side/right side of the track). Analysis of Weather Research and Forecasting model simulation data showed that rainfall on the right side was more than 15 times stronger than on the left side. The causes were analyzed by focusing on comparing the water vapor flux, stability and upward motion between the two sides. The major results were as follows: (1) Relative humidity on both sides was over 80%, whereas the convergence of water vapor flux in the lower troposphere was about 10 times larger on the right side than on the left side. (2) Both sides featured conditional symmetric instability [MPV (moist potential vorticity) 〈0], but the right side was more unstable than the left side. (3) Strong (weak) upward motion occurred throughout the troposphere on the right (left) side. The Q vector diagnosis suggested that large-scale and mesoscale forcing accounted for the difference in vertical velocity. Orographic lift and surface friction forced the development of the asymmetric precipitation pattern. On the right side, strong upward motion from the forcing of different scale weather systems and topography caused a substantial release of unstable energy and the transportation of water vapor from the lower to the upper troposphere, which produced torrential rainfall. However, the above conditions on the left side were all much weaker, which led to weaker rainfall. This may have been the cause of the asymmetric distribution of rainfall during the landfall of typhoon Haitang.
基金National Natural Science Foundation of China(91215302,51278308)Open Project for State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics(LAPC)
文摘Leveraging the commercial CFD software FLUENT,the fine-scale three-dimensional wind structure over the Paiya Mountains on the Dapeng Peninsula near Shenzhen,a city on the seashore of South China Sea,during the landfall of Typhoon Molave has been simulated and analyzed.Through the study,a conceptual wind structure model for mountainous areas under strong wind condition is established and the following conclusions are obtained as follows:(1)FLUENT can reasonably simulate a three-dimensional wind structure over mountainous areas under strong wind conditions;(2)the kinetic effect of a mountain can intensify wind speed in the windward side of the mountain and the area over the mountain peak;and(3)in the leeward side of the mountain,wind speed is relatively lower with relatively stronger wind shear and turbulence.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.SQ201206the Innovation Group Program of State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences,under contract No.LTOZZ1201+1 种基金the National Basic Research Program under contract No.2013CB956101the National Natural Science Foundation of China under contract No.41025019
文摘Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.
基金The National Basic Research Program(973 Program) of China under contract Nos 2015CB954004 and 2009CB421208the National Natural Science Foundation of China under contract Nos 41276006U1405233 and 40976013the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences under contract No.KLOCAW1307
文摘With moorings equipped with Acoustic Doppler Current Profilers (ADCP) in the northern South China Sea (SCS) in 2008 and 2009, we observed three near-inertial oscillation (NIO) events coded 2008a, 2009a and 2009b induced by passages of typhoons or tropical storms. This study compares characteristics of the three NIO events. Event 2008a was the strongest one among the three, and had the longest sustaining period (15 d), while events 2009a and 2009b sustained for only 4 and 8 d, respectively. The three events were distinguished by vertical energy distribution and phase propagation. As for the frequency shift of the NIO, event 2008a had a peak frequency lower than the local Coriolis frequency (red-shift), while events 2009a and 2009b showed blue-shift. The behavior of individual NIO event is jointly decided by the typhoon disturbance and the background ocean condition. Especially the background flow plays an important role by effects of advection and modulation. The results in this study provide observational evidence of variational NIO response to background flow field. As indicated by the distribution of vorticity and effective Coriolis frequency derived from numerical modeling, the large amplitude and elongated sustaining period of event 2008a were attributed to the waveguide effect of the background shear flow. This effect redistributed the NIO energy after the typhoon passage, absorbed incident waves and trapped energy in the area of the negative vorticity. While the background flow during events 2009a and 2009b did not have such effects due to the near-zero vorticity in the mooring area.
基金Supported by the National Natural Science Foundation of China(Nos.41706017,41421005,U1406401,U1133001)the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-01-06)the National Key Research and Development Program of China(No.2016YFC1402000)
文摘Based on in-situ observation,satellite and reanalysis data,responses of the western North Pacific subtropical ocean(WNPSO)to the slow-moving category 5 super typhoon Nanmadol in 2011 are analyzed.The dynamical response is dominated by near-inertial currents and Ekman currents with maximum amplitude of 0.39m/s and 0.15m/s,respectively.The near-inertial currents concentrated around 100m below the sea surface and had an e-folding timescale of 4 days.The near-inertial energy propagated both upward and downward,and the vertical phase speed and wavelength were estimated to be 5m/h and 175m,respectively.The frequency of the near-inertial currents was blue-shifted near the surface and redshifted in ocean interior which may relate to wave propagation and/or background vorticity.The resultant surface cooling reaches-4.35℃ and happens when translation speed of Nanmadol is smaller than 3.0m/s.When Nanmadol reaches super typhoon intensity,the cooling is less than 3.0℃ suggesting that the typhoon translation speed plays important roles as well as typhoon intensity in surface cooling.Upwelling induced by the slow-moving typhoon wind leads to typhoon track confined cooling area and the right-hand bias of cooling is slight.The mixed layer cooling and thermocline warming are induced by wind-generated upwelling and vertical entrainment.Vertical entrainment also led to mixed layer salinity increase and thermocline salinity decrease,however,mixed layer salinity decrease occurs at certain stations as well.Our results suggest that typhoon translation speed is a vital factor responsible for the oceanic thermohaline and dynamical responses,and the small Mach number(slow typhoon translation speed)facilitate development of Ekman current and upwelling.
基金supported by the National Key Basic Research and Development Plan(Grant No.2015CB953900)the National Natural Science Foundation of China(Grant No.41176005)+1 种基金the Public Science and Technology Research Funds Projects of the Ocean(Grant No.GYHY201105018)the China R&D Special Fund for Public Welfare Industry(GYHY 201306016)
文摘The upper-ocean responses to Typhoon Megi (2010) are investigated using data from ARGO floats and the satellite TMI. The experiments are conducted using a three-dimensional Princeton Ocean Model (POM) to assess the storm, which affected the Northwest Pacific Ocean (NWP) and the South China Sea (SCS). Results show that the upwelling and entrainment experiment together account for 93% of the SST anomalies, where typhoon-induced upwelling may cause strong ocean cooling. In addition, the anomalous SST cooling is stronger in the SCS than in the NWP. The most striking feature of the ocean response is the presence of a two-layer inertial wave in the SCS--a feature that is absent in the NWE The near-inertial oscillations can be generated as typhoon wakes, which have maximum flow velocity in the surface mixed layer and may last for a few days, after the typhoon's passage. Along the typhoon tracks, the horizontal currents in the upper ocean show a series of alternating negative and positive anomalies emanating from the typhoon.
基金supported by the National Key Research and Development Program of China (No. 2017YFC1404201)the National Natural Science Foundation of China (Nos. 41706035, 41876027 and 41876029)+2 种基金the Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology (No. 2017A01)China Postdoctoral Science Foundation (No. 2017M622111)the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606405)
文摘This study examined the characteristics and vertical propagation of near inertial waves(NIWs)induced by Typhoon Linfa(2015),based on in situ observations conducted southeast of Dongsha Islands in the South China Sea.The results demonstrate that the near inertial currents induced by Linfa had velocities up to 35 cm s^-1 in the mixed layer and 20 cm s^-1 in the ocean interior.The near inertial currents were polarized with predominantly clockwise-rotating components,the magnitudes of which were about 10 times larger than the counter-clockwise rotating components.The energy density spectrum showed that the emergence of NIWs resulted in energy redistribution from the diurnal band to the near inertial band.The wavenumber spectrum and the downward/upward current decomposition demonstrated that the NIWs and energy flux propagated mainly downward.The estimated vertical phase velocity and group velocity are 1.44 and 0.48 m h-1,respectively,corresponding to a vertical wavelength of 49.7 m.The e-folding time scale was 7.5 d based on the near inertial kinetic energy in the ocean interior.We found no obvious wave–wave interaction during the decay process of the NIWs.The frequency was blue-shifted,being 0.03 f0 higher than the local inertial frequency,which was caused by the background vorticity.The normal mode analysis suggests that the higher mode plays a dominant role in the propagation stage of the NIWs.
基金The National Natural Science Foundation of China under contract Nos 61273245 and 41306028the Beijing Natural Science Foundation under contract No.4152031+2 种基金the National Special Research Fund for Non-Profit Marine Sector under contract Nos201405022-3 and 2013418026-4the Ocean Science and Technology Program of North China Sea Branch of State Oceanic Administration under contract No.2017A01the Operational Marine Forecasting Program of State Oceanic Administration
文摘It is of vital importance to reduce injuries and economic losses by accurate forecasts of typhoon tracks. A huge amount of typhoon observations have been accumulated by the meteorological department, however, they are yet to be adequately utilized. It is an effective method to employ machine learning to perform forecasts. A long short term memory(LSTM) neural network is trained based on the typhoon observations during 1949–2011 in China's Mainland, combined with big data and data mining technologies, and a forecast model based on machine learning for the prediction of typhoon tracks is developed. The results show that the employed algorithm produces desirable 6–24 h nowcasting of typhoon tracks with an improved precision.
基金The National Natural Science Foundation of China under contract Nos 41506207,41776034 and 41706025the GASI Project under contract No.GASI-02-SCS-YGST2-02the Guangdong Province High Education Improving Plan under contract No.CYL231419012
文摘The China-France oceanography satellite(CFOSAT)developed by the China National Space Administration(CNSA)and Centre National D’Etudes Spatiales(CNES)was successfully launched into its orbit on October 29,2018.The Chinese wind scatterometer(SCAT)with swath width of about 1000 km and French wave spectrometer(Surface Wave Investigation and Monitoring,SWIM)with swath width of about 180 km onboard the CFOSAT are in line with all requirements and performing operationally.Thus,it is the first time that CFOSAT provides simultaneous and co-located observations of wind and wave fields with high spatial resolutions of 12.5 km×12.5 km for the winds and 70 km×90 km for the wave directional spectrum.The real-time and large-scale monitoring of wind and wave fields are of great significance for navigation and human activities on the sea(Xu et al.,2010;Tan et al.,2018;Sun et al.,2019),especially during severe typhoon processes when violent winds and hazardous waves occur(Walsh et al.,2002;Zhou et al.,2008).
基金The National Basic Research Program "973" Program of China under contract No.2009CB421202the National Natural Science Foundation of China under contract Nos 40976110 and 40706061+1 种基金the Public Science and Technology Research Funds Projects of Ocean under contract No.200905012the Zhejiang Provincial Natural Science Foundation of China under contract No.Y5090381
文摘Category 5 typhoon Megi was the most intense typhoon in 2010 of the world. It lingered in the South China Sea (SCS) for 5 d and caused a significant phytoplankton bloom detected by the satellite image. In this study, the authors investigated the ocean biological and physical responses to typhoon Megi by using chlorophyll-a (chl-a) concentration, sea surface temperature (SST), sea surface height anomaly (SSHA), sea surface wind measurements derived from different satellites and in situ data. The chl-a concentration (〉3 mg/m3) increased thirty times in the SCS after the typhoon passage in comparison with the mean level of October averaged from 2002 to 2009. With the relationship of wind stress curl and upwelling, the authors found that the speed of upwelling was over ten times during typhoon than pre-typhoon period. Moreover, the mixed layer deepened about 20 m. These reveal that the enhancement of chl-a concentration was triggered by strong vertical mixing and upwelling. Along the track of typhoon, the maximum sea surface cooling (6-8~C) took place in the SCS where the moving speed of typhoon was only 1.4-2.8 m/s and the mixed layer depth was about 20 m in pre-typhoon period. However, the SST drop at the east of the Philippines is only 1-2~C where the translation speed of typhoon was 5.5-6.9 m/s and the mixed layer depth was about 40 m in pre-typhoon period. So the extent of the SST drop was probably due to the moving speed of typhoon and the depth of the mixed layer. In addition, the region with the largest decline of the sea surface height anomaly can indicate the location where the maximum cooling occurs.
基金The National Natural Science Foundation of China under contract Nos 41776034,41476009 and41706025the GASI Project under contract Nos GASI-IPOVAI-01-02 and GASI-02-SCS-YGST2-02+1 种基金the Natural Key Research and Development Program of China under contract No 2016YFC1401403the Foundation of Guangdong Province for Outstanding Young Teachers in University under contract No.YQ201588
文摘This study deals with a unusual cooling event after Typhoon Mujigea passed over the northern South China Sea(SCS) in October 2015. We analyze the satellite sea surface temperature(SST) time series from October 3 to 18,2015 and find that the cooling process in the coastal ocean had two different stages. The first stage occurred immediately after typhoon passage on October 3, and reached a maximum SST drop of –2℃ on October 7 as the usual cold wake after typhoon. The second stage or the unusual extended cooling event occurred after 7d of the typhoon passage, and lasted for 5d from October 10 to 15. The maximum SST cooling was –4℃ and occurred after 12d of typhoon passage. The mechanism analysis results indicate that after landing and moving northwestward to the Yunnan-Guizhou Plateau(YGP), Typhoon Mujigea(2015) met the westerly wind front on October 5. The lowpressure and positive-vorticity disturbances to the front triggered meridional air flow and low-pressure trough,thus induced a katabatic cold jet downward from the Qinghai-Tibet Plateau(QTP) passing through the YGP to the northwestern SCS. The second cooling reached the maximum SST drop 4d later after the maximum air temperature drop of –9℃ on October 11. The simultaneous air temperature and SST observations at three coastal stations reveal that it is this katabatic cold jet intrusion to lead the unusual SST cooling event.
基金The National Natural Science Foundation of China under contract No.U1706216the National Key Research and Development Program of China under contract Nos 2016YFC1402000 and 2018YFC1407003+1 种基金the National Natural Science Foundation of China under contract Nos 41406017,U1406402 and 41421005the CAS Strategic Priority Project under contract Nos XDA19060202and XDA19060502
文摘Buoy-based observations of wave spectra during the passage of three typhoons in the northern South China Sea are examined.Though most spectra of mature typhoon-generated waves are unimodal,double-peaked spectra account for a significant proportion during the growing and decaying stages.This is due either to the superposition of swells on local wind waves or to the mechanism of nonlinear interaction between different wave components.The growth rate of energy density is an effective way to predict spectrum variation.The dominant wave direction depends on the location of the typhoon center to the site,but the direction spread shows no regularity in distant regions.In this study,a new six-parameter spectral formula is proposed to represent doublepeaked spectra and is shown to provide a better fit than previous models.The theoretical relationship between shape parameter and spectral width is still applicable to each peak.The characteristics of the variations of spectral parameters are analyzed.It is demonstrated that the spectral parameters are not only related to the typhoon intensity and typhoon track,but also have strong intercorrelations.Moreover,the growth relation between significant wave height and significant wave period is obtained to fit the typhoon-generated waves.
文摘Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the El Nino and La Nifia events. The result indicates that the typhoon tends to be inactive in the El Nifio years and active in the La Nina years and it is also dependent on the onset and ending time and intensity of the events and areas of genesis of typhoons. With statistic features of the frequency of typhoon activity in the El Nifio and La Nina years and the time-lag correlation between the frequency and sea surface temperature (SST). useful information is provided for the prediction of typhoon occurrence. In addition, the singular values disassemble (SVD) method is applied to study the correlation between the geopotential field and SST field. The result shows that the air-sea coupling in the El Nino years is unfavorable for the typhoon to develop, which take place with a smaller number. Opposite situations are found with the La Nina years.