Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood...Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood. This study, through a comprehensive review of MVT deposits across global fold-and-thrust belts, introduces a novel model elucidating the mineralization process in the context of tectonic belt evolution. It is demonstrated that during the stage Ⅰ, regional compression is introduced by early stages of plate convergence, causing the folding and thrusting and creating structural or lithological traps such as evaporite diapirs and unconformity-related carbonate dissolution-collapse structures. Thereafter, in stage Ⅱ, hydrocarbons begin to migrate and accumulate within these traps, where reduced sulfur is generated through thermochemical or bacterial sulfate reduction concurrent with or preceding Zn-Pb mineralization. In the subsequent stage Ⅲ, as plate convergence persists, the regional stress transitions from compression to transpression or extension. Under these conditions, steeply-dipping extensional faults are generated, facilitating the ascent of metalliferous brines into early-formed structural or lithological traps. Precipitation of Zn and Pb sulfides occurs through the mixing of Zn-Pb-transporting fluids with pre-existing reduced sulfur or by interaction with hydrocarbons.展开更多
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction...The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.展开更多
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
In this work,we report the preparation of 1T'-MoS_(2)/g-C_(3)N_(4) nanocage(NC)heterostructure by loading 2D semi-metal noble-metal-free 1T'-MoS_(2) on the g-C_(3)N_(4) nanocages(NCs).DFT calculation and exper...In this work,we report the preparation of 1T'-MoS_(2)/g-C_(3)N_(4) nanocage(NC)heterostructure by loading 2D semi-metal noble-metal-free 1T'-MoS_(2) on the g-C_(3)N_(4) nanocages(NCs).DFT calculation and experimental data have shown that the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure has a stronger light absorption capacity and larger specific surface area than pure g-C_(3)N_(4) NCs and g-C_(3)N_(4) nanosheets(NSs),and the presence of the co-catalysts 1T'-MoS_(2) can effectively inhibit the photoinduced carrier recombination.As a result,the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure with an optimum 1T'-MoS_(2) loading of 9 wt%displays a hydrogen evolution rate of 1949 mmol h^(-1) g^(-1),162.4,1.2,1.5,1.6 and 1.2 times than pure g-C_(3)N_(4) NCs(12 mmol h^(-1) g^(-1)),Pt/g-C_(3)N_(4) NCs(1615 mmol h^(-1) g^(-1))and Pt/g-C_(3)N_(4) nanosheets(NSs,1297 mmol h^(-1) g^(-1)),1T'-MoS_(2)/g-C_(3)N_(4) nanosheets(1216 mmol h^(-1) g^(-1))and 2H-MoS_(2)/g-C_(3)N_(4) nanocages(1573 mmol h^(-1) g^(-1)),respectively,and exhibits excellent cycle stability.Therefore,1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure is a suitable photocatalyst for green H_(2) production.展开更多
A large-scale pop-up structure occurs at the front of the northern Dabashan thrust belt (NDTB), bound by the NNE-dipping Chengkou fault to the south, and the SSW-dipping Gaoqiao fault to the north. The pop-up struct...A large-scale pop-up structure occurs at the front of the northern Dabashan thrust belt (NDTB), bound by the NNE-dipping Chengkou fault to the south, and the SSW-dipping Gaoqiao fault to the north. The pop-up structure shows different features along its strike as a direct reflection of the intensity of tectonic" activity. To the northwest, the structure is characterized by a two-directional thrust system forming a positive flower-like structure. In contrast, the southeastern part is composed of the vertical Chengkou fault and a series of N-directed backthrusts, showing a semi-flower-like structure. We present results from Ar-Ar dating of syntectonic microthermal metamorphic sericite which show that the Chengkou fault experienced intense deformation during the mid-Mesozoic Yanshanian epoch (about 143.3 Ma), causing rapid uplift and thrusting of the northern Dabashan thrust belt. During the propagation of this thrust, a series of backthrusts formed because of the obstruction from the frontier of Dabashan thrust belt, leading to the development of the pop-up structure.展开更多
The Yuxi (豫西) fold-thrust fracture belt is part of the gigantic fold-thrust fracture belt that extends NW in the southern North China plate. The contents of major elements of tectonites were analyzed by ICP-AES. T...The Yuxi (豫西) fold-thrust fracture belt is part of the gigantic fold-thrust fracture belt that extends NW in the southern North China plate. The contents of major elements of tectonites were analyzed by ICP-AES. The analysis of chemical compositions and new stress minerals indicates: extending from the surrounding country rocks to the center of the fracture belt, the Fe2O3 content gradually increases while the FeO content gradually decreases; regular increase, decrease or peak changes are shown for chemical compositions like SiO2, Al2O3, Fe2O3, MgO, CaO, FeO, loss on ignition, TIO:, K2O, Na2 O, etc.. New stress minerals are developed for the south branch and few for the north branch. The characteristics of chemical compositions and new stress minerals of the thrust fracture demonstrate that the fracture belt has undergone a process from a closed reducing environmental system to a relatively open. oxidizing environmental system, andcompressive fractures have resulted from compression in the late stages of evolution, and the dynamothermal metamorphism and thrusting intensities are different between the south and north branches of the belt, which is strong for the south branch but relatively weak for the north branch.展开更多
The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic int...The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.展开更多
The northwestern Sichuan region has experienced multi-stage tectonic evolution including marine cratonic basin from the Sinian to the Middle Triassic and intra-continental basin from the Late Triassic to the Cenozoic....The northwestern Sichuan region has experienced multi-stage tectonic evolution including marine cratonic basin from the Sinian to the Middle Triassic and intra-continental basin from the Late Triassic to the Cenozoic. Several regional tectonic activities caused complicated stratigraphic distribution and structural deformations in the deep-buried layers. During the key tectonic periods, some characteristic sedimentary and deformation structures were formed, including the step-shaped marginal carbonate platform of Dengying Formation, the western paleo-high at the end of Silurian, and the passive continental margin of the Late Paleozoic–Middle Triassic. The Meso-Cenozoic intra-continental compressional tectonic processes since the Late Triassic controlled the formation of complex thrusting structures surrounding and inside the northwestern basin. The northern Longmenshan fold-thrust belt has a footwall in-situ thrust structure,which is controlled by two sets of detachments in the Lower Triassic and Lower Cambrian and presents as a multi-level deformation structure with the shallow folds, the middle thin-skin thrusts and the deeper basement-involved folds. The thrust belt in front of the Micangshan Mountain shows a double-layer deformation controlled by the Lower Triassic salt detachment, which is composed by the upper monocline and deep-buried imbricate thrust structures. The interior of the basin is characterized by several rows of large-scale basement-involved folds with NEE strike direction. From the perspective of structural geology, the favorable exploration reservoirs and belts in northwestern Sichuan have obvious zoning characteristics. The favorable exploration layers of Dengying Formation of Upper Sinian are mainly distributed in the eastern and northern areas of the northwestern Sichuan Basin, in which the Jiulongshan structural belt, Zitong syncline and Yanting slope are the most favorable. The Lower Paleozoic was transformed by Caledonian paleo-uplift and late Cenozoic folding, and the midwest area such as the Zitong syncline is a potential area for hydrocarbon exploration. The favorable part of the Upper Paleozoic is mainly distributed in the northern Longmenshan belt and its frontal area, where the deep-buried thin-skin thrust structures in the footwall are the key exploration targets.展开更多
The title tetranuclear complex,(μ4-oxo)-hexakis(μ2-chloro)-tetrakis(2-amino-1,3-thiazole-N)-tetra-copper(ii) [Cu4(μ4-O)(μ-Cl)6L4](1,L=2-amino-1,3-thiazole) was synthesized by the reaction of CuCl2...The title tetranuclear complex,(μ4-oxo)-hexakis(μ2-chloro)-tetrakis(2-amino-1,3-thiazole-N)-tetra-copper(ii) [Cu4(μ4-O)(μ-Cl)6L4](1,L=2-amino-1,3-thiazole) was synthesized by the reaction of CuCl2·2H2O with 2-amino-1,3-thiazole in methanol and characterized by IR spectra and X-ray diffraction.Complex 1 crystallizes in triclinic,space group P1 with a=9.7137(2),b=10.7005(2),c=14.6505(2),α=83.9550(10),β=82.0930(10),γ=67.1640(10)°,V=1387.84(4)3,Mr=883.43,Z=2,μ=3.927 mm-1,Dc=2.1144 g/cm3,F(000)=868,R=0.0332 and wR=0.0814.The complex contains a tetrahedron of four CuII atoms coordinating to a central μ4-O atom,with the six edges of the tetrahedron bridged by six Cl atoms.The Cu-O bond distances range from 1.910(2) to 1.918(2),Cu-Cl from 2.3501(11) to 2.5924(10),and Cu-Cu from 3.1003(6) to 3.1663(6).The coordination geometries of the four coppers distort from trigonal bipramid to tetragonal pyramid with different distortion factors.The free animo groups of the ligands result in a lot of N-H···Cl and N-H···N intra-and intermolecular hydrogen bonds.展开更多
As typical quarternary copper-based chalcogenides,Cu–Zn–Sn–S nanocrystals(CZTS NCs)have emerged as a newfashioned electrocatalyst in hydrogen evolution reactions(HERs).Oleylamine(OM),a reducing surfactant and solve...As typical quarternary copper-based chalcogenides,Cu–Zn–Sn–S nanocrystals(CZTS NCs)have emerged as a newfashioned electrocatalyst in hydrogen evolution reactions(HERs).Oleylamine(OM),a reducing surfactant and solvent,plays a significant role in the assisting synthesis of CZTS NCs due to the ligand effect.Herein,we adopted a facile one-pot colloidal method for achieving the structure evolution of CZTS NCs from 2D nanosheets to 1D nanorods assisted through the continuous addition of OM.During the process,the mechanism of OM-induced morphology evolution was further discussed.When merely adding pure 1-dodecanethiol(DDT)as the solvent,the CZTS nanosheets were obtained.As OM was gradually added to the reaction,the CZTS NCs began to grow along the sides of the nanosheets and gradually shrink at the top,followed by the formation of stable nanorods.In acidic electrolytic conditions,the CZTS NCs with 1.0 OM addition display the optimal HER activity with a low overpotential of 561 m V at 10 m A/cm^(2) and a small Tafel slope of 157.6 m V/dec compared with other CZTS samples.The enhancement of HER activity could be attributed to the contribution of the synergistic effect of the diverse crystal facets to the reaction.展开更多
The Nandan-Hechi metallogenetic belt is the most important tin-polymetallic producing district in China, and is the location of the Dachang super-large tin deposit. Based on the detailed field investigation and isotop...The Nandan-Hechi metallogenetic belt is the most important tin-polymetallic producing district in China, and is the location of the Dachang super-large tin deposit. Based on the detailed field investigation and isotopic data, the stages of magmatic activity in the Nandan-Hechi metallogenetic belt have been lined out in this paper. Through the study about the geochemical characteristics of different granites, and by using ω(Al2O3)-ω(SiO2), ω(TFeO)/[ω(TFeO)+ω(MgO)]-ω(SiO2), AFM, ACF and Rb-Yb+Ta, Rb-Y+Nb, Ta-Yb, Nb-Y discrimination diagrams in combination with regional geological setting analysis, the authors carried out analyses about the structural environment for the formation of the granites, and discussed the structural environment and dynamic setting for the large scale mineralization in this area. Our study indicates that the majority of the granites in Nandan-Hechi metallogenetic belt belong to the POG type, while the later stage alaskite belongs to the RRG+CEUG type. The granites were formed at the stage of structural transformation from postorogenic phase to intraplate setting. But the major structural environment is characterized by steady regional extension. The formation age for the granites coincides with the time for this transformation, and this translation environment is favored for large-scale metallogenesis.展开更多
An energetic salt of bis(l,5-diamino-lH-tetrazolium)3,3"-bis(nitramino)-4, 4x-azo- furazan (C6H10N2206) was synthesized with the total yield of 61.7% by using 3,4-diaminofurazan (DAF) as the starting material...An energetic salt of bis(l,5-diamino-lH-tetrazolium)3,3"-bis(nitramino)-4, 4x-azo- furazan (C6H10N2206) was synthesized with the total yield of 61.7% by using 3,4-diaminofurazan (DAF) as the starting material. The structure of the title compound was confirmed by NMR, IR, elemental analysis and single-crystal X-ray diffraction. It crystallizes in orthorhombic, space group P21/c with a = 10.739(2), b = 6.4765(12), c = 14.138(3) A, fl= 108.787(3)°, V= 930.9(3) A3, Z = 1, Mr= 486.36, Dc = 1.735 g.cm3, μ= 0.15 mm-1, F(000) = 496, R = 0.042 and wR = 0.121. The thermal stability was analyzed by subsequently differential scanning calorimetry (DSC). And the enthalpy of formation and detonation was calculated theoretically, showing the first decomposition temperature was 142.1℃, the enthalpy of formation was 1614.23 kJ.mol1 and the detonation velocity and detonation pressure were 8.781 km.s-1 and 30.7 GPa, respectively.展开更多
The title compound Ph3P=C(H)C(O)PhNO2 (L) has been prepared by the addition of triphenylphosphine in acetone as solvent to 2-bromo-1-(3,nitrophenyl)ethanone followed by the addition of alkaline solution of sod...The title compound Ph3P=C(H)C(O)PhNO2 (L) has been prepared by the addition of triphenylphosphine in acetone as solvent to 2-bromo-1-(3,nitrophenyl)ethanone followed by the addition of alkaline solution of sodium hydroxide. The yellow crystals of the title ylide were grown in methanol/chloroform solution by drop method without stirring at room temperature. The solid state structure of ylide has been established by X-ray crystallography analysis. In the molecule of the title compound, the geometry around the P atom is nearly tetrahedral and the O atom is in synperiplanar orientation to the P atom. The nitrophenyl ring is twisted with respect to the plane of the carbonyl group through an angle of 36.6(1)°. The crystal (C26H20NO3P, Mr = 425.40) belongs to the monoclinic system, space group P21/n with a = 10.889(3), b = 14.467(3), e = 13.872(4)A, β = 103.08(3)°, V = 2128.6(10) A3, Z= 4, T= 100(2) K, R = 0.059 and wR = 0.163 for 3984 observed reflections with I〉 2σ(I).展开更多
基金funded by National Natural Science Foundation of China (Grant Nos. 42125204, 92155305, 42103068, 42372114, 42372115)。
文摘Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood. This study, through a comprehensive review of MVT deposits across global fold-and-thrust belts, introduces a novel model elucidating the mineralization process in the context of tectonic belt evolution. It is demonstrated that during the stage Ⅰ, regional compression is introduced by early stages of plate convergence, causing the folding and thrusting and creating structural or lithological traps such as evaporite diapirs and unconformity-related carbonate dissolution-collapse structures. Thereafter, in stage Ⅱ, hydrocarbons begin to migrate and accumulate within these traps, where reduced sulfur is generated through thermochemical or bacterial sulfate reduction concurrent with or preceding Zn-Pb mineralization. In the subsequent stage Ⅲ, as plate convergence persists, the regional stress transitions from compression to transpression or extension. Under these conditions, steeply-dipping extensional faults are generated, facilitating the ascent of metalliferous brines into early-formed structural or lithological traps. Precipitation of Zn and Pb sulfides occurs through the mixing of Zn-Pb-transporting fluids with pre-existing reduced sulfur or by interaction with hydrocarbons.
基金supported by the National Key Research and Development Program of China(2021YFB4001301)the Science and Technology Commission of Shanghai Municipality(21DZ1208600)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2021ZD105)。
文摘The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
基金funding from the National Natural Science Foundation of China (No.51872173)Taishan Scholar Foundation of Shandong Province (No.tsqn201812068)+2 种基金Youth Innovation Technology Project of Higher School in Shandong Province (No.2019KJA013)Science and Technology Special Project of Qingdao City (No.20-3-4-3-nsh)the Opening Fund of State Key Laboratory of Heavy Oil Processing (No.SKLOP202002006)。
文摘In this work,we report the preparation of 1T'-MoS_(2)/g-C_(3)N_(4) nanocage(NC)heterostructure by loading 2D semi-metal noble-metal-free 1T'-MoS_(2) on the g-C_(3)N_(4) nanocages(NCs).DFT calculation and experimental data have shown that the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure has a stronger light absorption capacity and larger specific surface area than pure g-C_(3)N_(4) NCs and g-C_(3)N_(4) nanosheets(NSs),and the presence of the co-catalysts 1T'-MoS_(2) can effectively inhibit the photoinduced carrier recombination.As a result,the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure with an optimum 1T'-MoS_(2) loading of 9 wt%displays a hydrogen evolution rate of 1949 mmol h^(-1) g^(-1),162.4,1.2,1.5,1.6 and 1.2 times than pure g-C_(3)N_(4) NCs(12 mmol h^(-1) g^(-1)),Pt/g-C_(3)N_(4) NCs(1615 mmol h^(-1) g^(-1))and Pt/g-C_(3)N_(4) nanosheets(NSs,1297 mmol h^(-1) g^(-1)),1T'-MoS_(2)/g-C_(3)N_(4) nanosheets(1216 mmol h^(-1) g^(-1))and 2H-MoS_(2)/g-C_(3)N_(4) nanocages(1573 mmol h^(-1) g^(-1)),respectively,and exhibits excellent cycle stability.Therefore,1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure is a suitable photocatalyst for green H_(2) production.
基金supported by NationaI Natural Science Foundation of China(No.40821002)major project of China Petrochemical Corporation(Sinopec Group) for fundamental research(ContinentaI Tectonics and Prospects of Marine Origin Hydrocarbon Resource in The Middle-Upper Yangtze Region, Southern China,No.YPH08001-01)
文摘A large-scale pop-up structure occurs at the front of the northern Dabashan thrust belt (NDTB), bound by the NNE-dipping Chengkou fault to the south, and the SSW-dipping Gaoqiao fault to the north. The pop-up structure shows different features along its strike as a direct reflection of the intensity of tectonic" activity. To the northwest, the structure is characterized by a two-directional thrust system forming a positive flower-like structure. In contrast, the southeastern part is composed of the vertical Chengkou fault and a series of N-directed backthrusts, showing a semi-flower-like structure. We present results from Ar-Ar dating of syntectonic microthermal metamorphic sericite which show that the Chengkou fault experienced intense deformation during the mid-Mesozoic Yanshanian epoch (about 143.3 Ma), causing rapid uplift and thrusting of the northern Dabashan thrust belt. During the propagation of this thrust, a series of backthrusts formed because of the obstruction from the frontier of Dabashan thrust belt, leading to the development of the pop-up structure.
基金This paper is supported by the Key Basic Research Project funded by theChinese Academy of Sciences (No . KZCX2-SW-117) .
文摘The Yuxi (豫西) fold-thrust fracture belt is part of the gigantic fold-thrust fracture belt that extends NW in the southern North China plate. The contents of major elements of tectonites were analyzed by ICP-AES. The analysis of chemical compositions and new stress minerals indicates: extending from the surrounding country rocks to the center of the fracture belt, the Fe2O3 content gradually increases while the FeO content gradually decreases; regular increase, decrease or peak changes are shown for chemical compositions like SiO2, Al2O3, Fe2O3, MgO, CaO, FeO, loss on ignition, TIO:, K2O, Na2 O, etc.. New stress minerals are developed for the south branch and few for the north branch. The characteristics of chemical compositions and new stress minerals of the thrust fracture demonstrate that the fracture belt has undergone a process from a closed reducing environmental system to a relatively open. oxidizing environmental system, andcompressive fractures have resulted from compression in the late stages of evolution, and the dynamothermal metamorphism and thrusting intensities are different between the south and north branches of the belt, which is strong for the south branch but relatively weak for the north branch.
基金supported by the National Natural Science Foundation of China(Grant Nos.41572187,41972219,41927802 and 42072320)the China Postdoctoral Science Foundation(Grant No.2020M671432)。
文摘The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.
基金Supported by the China National Science and Technology Major Project(2016ZX05003-001)PetroChina Science and Technology Project(2016E-0601,2016B-0501)
文摘The northwestern Sichuan region has experienced multi-stage tectonic evolution including marine cratonic basin from the Sinian to the Middle Triassic and intra-continental basin from the Late Triassic to the Cenozoic. Several regional tectonic activities caused complicated stratigraphic distribution and structural deformations in the deep-buried layers. During the key tectonic periods, some characteristic sedimentary and deformation structures were formed, including the step-shaped marginal carbonate platform of Dengying Formation, the western paleo-high at the end of Silurian, and the passive continental margin of the Late Paleozoic–Middle Triassic. The Meso-Cenozoic intra-continental compressional tectonic processes since the Late Triassic controlled the formation of complex thrusting structures surrounding and inside the northwestern basin. The northern Longmenshan fold-thrust belt has a footwall in-situ thrust structure,which is controlled by two sets of detachments in the Lower Triassic and Lower Cambrian and presents as a multi-level deformation structure with the shallow folds, the middle thin-skin thrusts and the deeper basement-involved folds. The thrust belt in front of the Micangshan Mountain shows a double-layer deformation controlled by the Lower Triassic salt detachment, which is composed by the upper monocline and deep-buried imbricate thrust structures. The interior of the basin is characterized by several rows of large-scale basement-involved folds with NEE strike direction. From the perspective of structural geology, the favorable exploration reservoirs and belts in northwestern Sichuan have obvious zoning characteristics. The favorable exploration layers of Dengying Formation of Upper Sinian are mainly distributed in the eastern and northern areas of the northwestern Sichuan Basin, in which the Jiulongshan structural belt, Zitong syncline and Yanting slope are the most favorable. The Lower Paleozoic was transformed by Caledonian paleo-uplift and late Cenozoic folding, and the midwest area such as the Zitong syncline is a potential area for hydrocarbon exploration. The favorable part of the Upper Paleozoic is mainly distributed in the northern Longmenshan belt and its frontal area, where the deep-buried thin-skin thrust structures in the footwall are the key exploration targets.
基金supported by the Scientific Research Common Program of Beijing Municipal Commission of Education (No. KM201010028008)
文摘The title tetranuclear complex,(μ4-oxo)-hexakis(μ2-chloro)-tetrakis(2-amino-1,3-thiazole-N)-tetra-copper(ii) [Cu4(μ4-O)(μ-Cl)6L4](1,L=2-amino-1,3-thiazole) was synthesized by the reaction of CuCl2·2H2O with 2-amino-1,3-thiazole in methanol and characterized by IR spectra and X-ray diffraction.Complex 1 crystallizes in triclinic,space group P1 with a=9.7137(2),b=10.7005(2),c=14.6505(2),α=83.9550(10),β=82.0930(10),γ=67.1640(10)°,V=1387.84(4)3,Mr=883.43,Z=2,μ=3.927 mm-1,Dc=2.1144 g/cm3,F(000)=868,R=0.0332 and wR=0.0814.The complex contains a tetrahedron of four CuII atoms coordinating to a central μ4-O atom,with the six edges of the tetrahedron bridged by six Cl atoms.The Cu-O bond distances range from 1.910(2) to 1.918(2),Cu-Cl from 2.3501(11) to 2.5924(10),and Cu-Cu from 3.1003(6) to 3.1663(6).The coordination geometries of the four coppers distort from trigonal bipramid to tetragonal pyramid with different distortion factors.The free animo groups of the ligands result in a lot of N-H···Cl and N-H···N intra-and intermolecular hydrogen bonds.
基金partially supported by National Natural Science Foundation of China (12274021 and 62075005)。
文摘As typical quarternary copper-based chalcogenides,Cu–Zn–Sn–S nanocrystals(CZTS NCs)have emerged as a newfashioned electrocatalyst in hydrogen evolution reactions(HERs).Oleylamine(OM),a reducing surfactant and solvent,plays a significant role in the assisting synthesis of CZTS NCs due to the ligand effect.Herein,we adopted a facile one-pot colloidal method for achieving the structure evolution of CZTS NCs from 2D nanosheets to 1D nanorods assisted through the continuous addition of OM.During the process,the mechanism of OM-induced morphology evolution was further discussed.When merely adding pure 1-dodecanethiol(DDT)as the solvent,the CZTS nanosheets were obtained.As OM was gradually added to the reaction,the CZTS NCs began to grow along the sides of the nanosheets and gradually shrink at the top,followed by the formation of stable nanorods.In acidic electrolytic conditions,the CZTS NCs with 1.0 OM addition display the optimal HER activity with a low overpotential of 561 m V at 10 m A/cm^(2) and a small Tafel slope of 157.6 m V/dec compared with other CZTS samples.The enhancement of HER activity could be attributed to the contribution of the synergistic effect of the diverse crystal facets to the reaction.
文摘The Nandan-Hechi metallogenetic belt is the most important tin-polymetallic producing district in China, and is the location of the Dachang super-large tin deposit. Based on the detailed field investigation and isotopic data, the stages of magmatic activity in the Nandan-Hechi metallogenetic belt have been lined out in this paper. Through the study about the geochemical characteristics of different granites, and by using ω(Al2O3)-ω(SiO2), ω(TFeO)/[ω(TFeO)+ω(MgO)]-ω(SiO2), AFM, ACF and Rb-Yb+Ta, Rb-Y+Nb, Ta-Yb, Nb-Y discrimination diagrams in combination with regional geological setting analysis, the authors carried out analyses about the structural environment for the formation of the granites, and discussed the structural environment and dynamic setting for the large scale mineralization in this area. Our study indicates that the majority of the granites in Nandan-Hechi metallogenetic belt belong to the POG type, while the later stage alaskite belongs to the RRG+CEUG type. The granites were formed at the stage of structural transformation from postorogenic phase to intraplate setting. But the major structural environment is characterized by steady regional extension. The formation age for the granites coincides with the time for this transformation, and this translation environment is favored for large-scale metallogenesis.
文摘An energetic salt of bis(l,5-diamino-lH-tetrazolium)3,3"-bis(nitramino)-4, 4x-azo- furazan (C6H10N2206) was synthesized with the total yield of 61.7% by using 3,4-diaminofurazan (DAF) as the starting material. The structure of the title compound was confirmed by NMR, IR, elemental analysis and single-crystal X-ray diffraction. It crystallizes in orthorhombic, space group P21/c with a = 10.739(2), b = 6.4765(12), c = 14.138(3) A, fl= 108.787(3)°, V= 930.9(3) A3, Z = 1, Mr= 486.36, Dc = 1.735 g.cm3, μ= 0.15 mm-1, F(000) = 496, R = 0.042 and wR = 0.121. The thermal stability was analyzed by subsequently differential scanning calorimetry (DSC). And the enthalpy of formation and detonation was calculated theoretically, showing the first decomposition temperature was 142.1℃, the enthalpy of formation was 1614.23 kJ.mol1 and the detonation velocity and detonation pressure were 8.781 km.s-1 and 30.7 GPa, respectively.
文摘The title compound Ph3P=C(H)C(O)PhNO2 (L) has been prepared by the addition of triphenylphosphine in acetone as solvent to 2-bromo-1-(3,nitrophenyl)ethanone followed by the addition of alkaline solution of sodium hydroxide. The yellow crystals of the title ylide were grown in methanol/chloroform solution by drop method without stirring at room temperature. The solid state structure of ylide has been established by X-ray crystallography analysis. In the molecule of the title compound, the geometry around the P atom is nearly tetrahedral and the O atom is in synperiplanar orientation to the P atom. The nitrophenyl ring is twisted with respect to the plane of the carbonyl group through an angle of 36.6(1)°. The crystal (C26H20NO3P, Mr = 425.40) belongs to the monoclinic system, space group P21/n with a = 10.889(3), b = 14.467(3), e = 13.872(4)A, β = 103.08(3)°, V = 2128.6(10) A3, Z= 4, T= 100(2) K, R = 0.059 and wR = 0.163 for 3984 observed reflections with I〉 2σ(I).