期刊文献+
共找到14,477篇文章
< 1 2 250 >
每页显示 20 50 100
Astronomical influence of the development of Paleogene thin coal seam groups in offshore Lacustrine basins:A case study of the ZhuⅠDepression's Enping Formation located in the northern South China Sea
1
作者 Yan Liu Shengbing Huang +4 位作者 Dongdong Wang Nan Li Yuting Yin Ying Chen Zengxue Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期136-150,共15页
The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stabili... The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed. 展开更多
关键词 PALEOGENE Pearl(Zhujiang)River Mouth Basin coal seam development astronomical cycles
下载PDF
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model 被引量:1
2
作者 Jun Guo Wenbo Huang +7 位作者 Guorui Feng Jinwen Bai Lirong Li Zi Wang Luyang Yu Xiaoze Wen Jie Zhang Wenming Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期491-505,共15页
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ... The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal. 展开更多
关键词 Extremely thick coal seam Fully mechanized top coal caving Support strength Support-surrounding rock interaction
下载PDF
Theoretical analysis and engineering application of controllable shock wave technology for enhancing coalbed methane in soft and low‑permeability coal seams
3
作者 Guodong Qiao Zegong Liu +4 位作者 Yongmin Zhang Changping Yi Kui Gao Shigui Fu Youzhi Zhao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期123-142,共20页
Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas con... Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams. 展开更多
关键词 CSW antireflection in coal seams CBM extraction enhancement Soft and low-permeability coal seams Field test
下载PDF
Disasters of gas-coal spontaneous combustion in goaf of steeply inclined extra-thick coal seams 被引量:1
4
作者 Qiming Zhang Enyuan Wang +2 位作者 Xiaojun Feng Shuxin Liu Dong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4141-4153,共13页
In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ... In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC. 展开更多
关键词 Steeply inclined extra-thick coal seams Gas explosion coal spontaneous combustion Coupling disaster Numerical simulation
下载PDF
Insights into carbon dioxide sequestration into coal seams through coupled gas flow-adsorption-deformation modelling
5
作者 Hywel Thomas Min Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期26-40,共15页
Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this... Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams. 展开更多
关键词 CO_(2)geological storage coal seam ADSORPTION Desorption hysteresis
下载PDF
Fracture propagation and evolution law of indirect fracturing in the roof of broken soft coal seams
6
作者 Haifeng Zhao Pengyue Li +1 位作者 Xuejiao Li Wenjie Yao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期78-102,共25页
Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings ... Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams. 展开更多
关键词 Indirect fracturing Roof of coal seam Fracture propagation and evolution coalbed methane Cohesive element method Combination weight method
下载PDF
Research on the mechanism of rockburst induced by mined coal-rock linkage of sharply inclined coal seams
7
作者 Xingping Lai Huicong Xu +4 位作者 Pengfei Shan Qinxin Hu Weixi Ding Shangtong Yang Zhongming Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期929-942,共14页
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t... In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams. 展开更多
关键词 steeply inclined coal seam localized deformation mechanism of induced rockburst prevention and control of rockburst
下载PDF
Analysis of the Risk of Water Breakout in the Bottom Plate of High-Intensity Mining of Extra-Thick Coal Seams
8
作者 Shuo Wang Hongdong Kang Xinchen Wang 《Journal of Geoscience and Environment Protection》 2024年第5期81-91,共11页
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni... In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard. 展开更多
关键词 Extra-Thick coal seam High-Intensity Mining Microseismic Monitoring Water-Surge Hazard Borehole Peeping
下载PDF
New development of longwall mining equipment based on automation and intelligent technology for thin seam coal 被引量:10
9
作者 Guo-fa WANG 《Journal of Coal Science & Engineering(China)》 2013年第1期97-103,共7页
The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the ... The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the thin seam drum shearer. The key technology of short length and high power thin seam drum shearer, and new type roof support with big extension ratio and plate canopy were introduced. The new research achievement on automatic control system of complete sets of equipment for the thin seam coal, which composed of electronic-hydraulic system, compact thin seam roof supports, high effective shearer with intelligent control system, and characterized by automatical follow-up and remote control technology, was described in this paper.. 展开更多
关键词 longwall mining thin coal seam complete sets of equipment automatic system intelligent system
下载PDF
Non-harmonious deformation controlling of gob-side entry in thin coal seam under dynamic pressure 被引量:6
10
作者 Kegong Fan Hongguang Liang +1 位作者 Chishuai Ma Chuanwei Zang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第3期269-274,共6页
The behavior of gob-side entry under dynamic pressure is totally different from the one driven after the movement of overlying strata above the adjacent coalface goal. The gob-side entry will experience severe roof la... The behavior of gob-side entry under dynamic pressure is totally different from the one driven after the movement of overlying strata above the adjacent coalface goal. The gob-side entry will experience severe roof lateral structural adjustments caused by adjacent coalface mining. Thus the deformation and failure characteristics of narrow coal pillar along the gob should be carefully considered. On the basis of the data of the gob-side entry obtained in a thin coal seam under dynamic pressure, the measures to reinforce the narrow coal pillar are put forward. In addition, the non-harmonious controlling of the rock structures and non-equilibrium gob-side entry deformation is proposed to avoid potential failure. Field practices show that the supporting problems of the gob-side entry under dynamic pressure can be well addressed, which could be used in other similar minin~ cases. 展开更多
关键词 Gob-side entry under dynamic pressureNarrow coal pillarnon-harmonious controlthin coal seam
下载PDF
The adjusting mining technology of combining fully mechanized with individual prop,rotating,hilt,irregular form,and double unit face on thin coal seam of Tianchen Mine 被引量:1
11
作者 宋华岭 温国锋 李金克 《Journal of Coal Science & Engineering(China)》 2008年第1期44-48,共5页
Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This inno... Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully. 展开更多
关键词 mining of thin coal seam double unit face rotational and adjusting mining
下载PDF
Study on the economic mining method for the close quarter coal seams with thin rock sheet
12
作者 勾攀峰 陈兆强 员小有 《Journal of Coal Science & Engineering(China)》 2001年第2期26-29,共4页
The paper presents the mining method for the close quarter coal seams with thin rock sheet, that is mining the low coal seam, recovering the top coal seam after putting down the roof rock of the low coal seam. Practic... The paper presents the mining method for the close quarter coal seams with thin rock sheet, that is mining the low coal seam, recovering the top coal seam after putting down the roof rock of the low coal seam. Practice has proved that in recovering the top coal outside the face width after the rock between seams falls naturally or is demolished, the technology is simple, easy to operate and does not make a great demand for technical equipment. In the process of recovering the top coal, the low seam support could not be affected seriously, and two seams mining could be coordinated. Compared with the individual mining method, this mining method can produce a better economic benefit. 展开更多
关键词 close quarter coal seams mining method recovering top coal
下载PDF
Ground fissure development regularity and formation mechanism of shallow buried coal seam mining with Karst landform in Jiaozi coal mine: a case study 被引量:1
13
作者 ZHU Heng-zhong 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3101-3120,共20页
A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr... A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform. 展开更多
关键词 Karst landform Shallow buried coal seam Development regularity Formation mechanism Ground fissure Repeated mining
下载PDF
Further Information of the Associated Li Deposits in the No.6 Coal Seam at Jungar Coalfield, Inner Mongolia, Northern China 被引量:37
14
作者 SUN Yuzhuang ZHAO Cunliang +5 位作者 LI Yanheng WANG Jinxi ZHANG Jianya JIN Zhe LIN Mingyue Wolfgang KALKREUTH 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期1097-1108,共12页
Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP... Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP), inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRD), and scanning electron microscope in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX) analysis. The results indicate that the Li contents have reached the industrial grade of the coal associated Li deposit, and the total Li reserves have reached 2406600 tons, that is, 5157000 tons Li2O in the No. 6 seam in the Jungar Coalfield. The sequential chemical extraction procedure results suggest that the Li concentration is mainly related to inorganic matter. The minerals in the coals consist of kaolinite, boehmite, chlorite-group mineral, quartz, calcite, pyrite, siderite and amorphous clay material. Some Li could be absorbed by clay minerals in the Li-bearing coal seam. The chlorite phase?could be?most likely the host for a part of Li. The Yinshan Oldland should be the most possible source of Li of the coal. 展开更多
关键词 Li deposit industrial grade coal seam GEOCHEMISTRY Jungar coalfield
下载PDF
Rockburst mechanism in soft coal seam within deep coal mines 被引量:17
15
作者 Zhang Junfei Jiang Fuxing +2 位作者 Yang Jianbo Bai Wushuai Zhang Lei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期551-556,共6页
A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method ... A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method used to evaluate rockburst in hard coal seams is not applicable to soft coal seams. This paper established an energy integral model for the rockburst-inducing area and a friction work calculation model for the plastic area. If the remaining energy after the coal seam is broken in the rockburstinducing area is greater than the friction work required for the coal to burst out, then a rockburst accident will occur. Mechanisms of ‘‘quaking without bursting" and ‘‘quaking and bursting" are clarified for soft coal seams and corresponding control measures are proposed as the optimization of roadway layouts and use of ‘‘three strong systems"(strong de-stressing, strong supporting, and strong monitoring). 展开更多
关键词 Soft coal seam ROCKBURST Plastic zone Elastic strain energy Friction work
下载PDF
Control mechanism of a cable truss system for stability of roadways within thick coal seams 被引量:6
16
作者 YAN Hong HE Fu-lian +2 位作者 LI Lin-yue FENG Rui-min XING Peng-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1098-1110,共13页
Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extreme... Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extremely thick coal seams because the control mechanism of the system for the deformation of the roof and the separation between coal rock segments is not completely understood. By using the relationship between the support system and the roof strata, a mechanical model was established to calculate the deformation of the roof in a thick coal seam with bedding separation under different support conditions: with an anchor truss support and without support. On this basis, the research was used to deduce a method for computing the minimum pre-tightening forces in the anchor truss, the maximum amounts of subsidence and separation with, and without, anchor truss support under the roof, and the maximum subsidence and the decreasing amounts of the separation before and after adopting the anchor truss. Additionally, mechanical relationships between the minimum pre-tightening force and the anchoring force in the anchor were analyzed. By taking a typical roadway with thick coal roof as an example, the theoretical results mentioned above were applied in the analysis and testing of a roof supporting project in a roadway field to verify the accuracy of the theory: favorable experimental results were achieved. In addition, the relationships among other parameters were analyzed, including the minimum pre-tightening forces applied by the anchor truss, the angle of inclination of the anchor cable, and the array pitch. Meanwhile, the changing characteristics of the amounts of roof separation and subsidence with key parameters of the support system(such as array pitch, pre-tightening force, and inclination angle) were also analyzed. The research results revealed the acting mechanism of the anchor truss in control of roadway stability with a thick coal seam, providing a theoretical basis of its application in coal mining. 展开更多
关键词 cable TRUSS system THICK coal seam ROOF separation pre-tightening force
下载PDF
Overburden fracture evolution laws and water-controlling technologies in mining very thick coal seam under water-rich roof 被引量:8
17
作者 Zhang Youxi Tu Shihao +1 位作者 Bai Qingsheng Li Jianjun 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期693-700,共8页
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l... Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof. 展开更多
关键词 Water-rich roof Very thick coal seam Mining induced fracture Evolution law Water-controlling technology
下载PDF
Key technologies and equipment for a fully mechanized top-coal caving operation with a large mining height at ultra-thick coal seams 被引量:61
18
作者 Jinhua Wang Bin Yu +4 位作者 Hongpu Kang Guofa Wang Debing Mao Yuntao Liang Pengfei Jiang 《International Journal of Coal Science & Technology》 EI 2015年第2期97-162,共66页
Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi... Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed. 展开更多
关键词 Ultra-thick coal seams Top-coal caving mining Large mining height Mining method - Mining equipment Roadway support Safety guarantee
下载PDF
Reflectivity forward modeling and a CSSI method seismic inversion study of igneous intrusive area,coked area,and gas-enriched area located within a coal seam 被引量:18
19
作者 XU Yong-zhong CUI Ruo-fei +3 位作者 HUANG Wei-chuan CHEN Tong-jun CHEN Shi-zhong DONG Shou-hua 《Mining Science and Technology》 EI CAS 2009年第4期457-462,共6页
We applied the reflectivity method and the constrained sparse spike inverse modeling(CSSI) method to the interpretation of coal field lithologic seismic data.After introducing the principles of these two methods we di... We applied the reflectivity method and the constrained sparse spike inverse modeling(CSSI) method to the interpretation of coal field lithologic seismic data.After introducing the principles of these two methods we discuss some parameters of a geological model involving possible gas enriched areas or intruded igneous rock.The geological model was constructed and a 60 Hz seismic response profile was obtained looking for igneous rock intrusion and coked areas of the coal seam using the reflectivity method.Starting from synthesized logging data from two wells and a synthesized seismic wavelet we calibrated the model to show accurate strata.Finally,we predicted the lithology within a 10 m igneous rock area,a 3 m coal seam area,and a coked area using the CSSI technique.The results show that the CSSI technique can identify hard to recognize lithologic features that normal profil-ing methods might miss.It can quantitatively analyze and evaluate the intrusive area,the coked area,and the gas-enriched area. 展开更多
关键词 CSSI reflectivity method igneous rock coal seam coked area gas-enriched area
下载PDF
Pressure relief, gas drainage and deformation effects on an overlying coal seam induced by drilling an extra-thin protective coal seam 被引量:11
20
作者 LIU Hai-bo CHENG Yuan-ping +2 位作者 SONG Jian-cheng SHANG Zheng-jie WANG Liang 《Mining Science and Technology》 EI CAS 2009年第6期724-729,共6页
Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological ... Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%. 展开更多
关键词 extra-thin protective coal seam DRILLING pressure relief expansion deformation gas drainage
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部