Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the e...Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS.展开更多
Damage assessments in three dimensional (3D) textile composites subjected to mechanical loading can be performed by non-destructive and destructive techniques.This paper applies the two techniques to investigate the f...Damage assessments in three dimensional (3D) textile composites subjected to mechanical loading can be performed by non-destructive and destructive techniques.This paper applies the two techniques to investigate the fracture behavior of 3D tufted textile composites.X-ray computed tomography as a non-destructive evaluation method is appropriate to detect damage locations and identify their progression in 3D textile composites.Destructive methods such as sectioning toward observing damage provide valuable information about damage patterns.The results of this research could be utilized to evaluate the initial cause of rupture in 3D tufted composites used in aerospace structures and analyze fracture modes and damage progression.展开更多
A parametric method is developed to quantitatively represent the microstructure of 3D woven structures. Different binding patterns, such as angle interlock and orthogonal interlock with through-thickness or layer-to-l...A parametric method is developed to quantitatively represent the microstructure of 3D woven structures. Different binding patterns, such as angle interlock and orthogonal interlock with through-thickness or layer-to-layer bindings, are classified. A unit cell of 3D woven structure is defined with four constituent yarn systems represented by nine structural parameters. A mapping relationship between the 3D woven structure and corresponding representative parameters is thus established. The study indicates that four out of the nine parameters are necessary to represent a 3D woven structure with an angle interlock binding, and that five parameters are required to describe a 3D woven structure with an orthogonal interlock binding. Once the structural parameters are determined, the pattern of 3D woven structures can be unambiguously identified, and vice versa. In addition to the purpose of structure presentation, the method can be further used as a means for designing 3D woven structure to meet the performance requirements of 3D woven composites.展开更多
In the third season of 2009, China textile industry remained the trend of stablilized recovery which began from the fi rst half. And this trend seemed to be more clear. This was a general conslusion
Fixed asset investment growth in China’s textile industry slowed in the first three quarters this year, mainly resulting from the yuan appreciation, the rising material and labor costs, as well as dismal overseas mar...Fixed asset investment growth in China’s textile industry slowed in the first three quarters this year, mainly resulting from the yuan appreciation, the rising material and labor costs, as well as dismal overseas market hit by the subprime lending crisis. From January to September, the total fixed-assets investment in the textile industry was up 10.15% to RMB 202.269 billion year-on-year,展开更多
基金supported by the Scientific Research Foundation of Hunan Provincial Education Department,China(22B0893)the Scientific Research Foundation of Hunan Provincial Education Department,China(20A060)。
文摘Electrocatalytic overall water splitting(OWS),a pivotal approach in addressing the global energy crisis,aims to produce hydrogen and oxygen.However,most of the catalysts in powder form are adhesively bounding to the electrodes,resulting in catalyst detachment by bubble generation and other uncertain interference,and eventually reducing the OWS performance.To surmount this challenge,we synthesized a hybrid material of Co_(3)S_(4)-pyrolysis lotus fiber(labeled as Co_(3)S_(4)-p LF)textile by hydrothermal and hightemperature pyrolysis processes for electrocatalytic OWS.Owing to the natural LF textile exposing the uniformly distributed functional groups(AOH,ANH_(2),etc.)to anchor Co_(3)S_(4)nanoparticles with hierarchical porous structure and outstanding hydrophily,the hybrid Co_(3)S_(4)-p LF catalyst shows low overpotentials at 10 m A cm^(-2)(η_(10,HER)=100 m Vη_(10,OER)=240 mV)alongside prolonged operational stability during electrocatalytic reactions.Theoretical calculations reveal that the electron transfer from p LF to Co_(3)S_(4)in the hybrid Co_(3)S_(4)-p LF is beneficial to the electrocatalytic process.This work will shed light on the development of nature-inspired carbon-based materials in hybrid electrocatalysts for OWS.
文摘Damage assessments in three dimensional (3D) textile composites subjected to mechanical loading can be performed by non-destructive and destructive techniques.This paper applies the two techniques to investigate the fracture behavior of 3D tufted textile composites.X-ray computed tomography as a non-destructive evaluation method is appropriate to detect damage locations and identify their progression in 3D textile composites.Destructive methods such as sectioning toward observing damage provide valuable information about damage patterns.The results of this research could be utilized to evaluate the initial cause of rupture in 3D tufted composites used in aerospace structures and analyze fracture modes and damage progression.
基金the Research Fund for the Doctoral Program of Higher Education and the Shanghai Key Discipline Project
文摘A parametric method is developed to quantitatively represent the microstructure of 3D woven structures. Different binding patterns, such as angle interlock and orthogonal interlock with through-thickness or layer-to-layer bindings, are classified. A unit cell of 3D woven structure is defined with four constituent yarn systems represented by nine structural parameters. A mapping relationship between the 3D woven structure and corresponding representative parameters is thus established. The study indicates that four out of the nine parameters are necessary to represent a 3D woven structure with an angle interlock binding, and that five parameters are required to describe a 3D woven structure with an orthogonal interlock binding. Once the structural parameters are determined, the pattern of 3D woven structures can be unambiguously identified, and vice versa. In addition to the purpose of structure presentation, the method can be further used as a means for designing 3D woven structure to meet the performance requirements of 3D woven composites.
文摘In the third season of 2009, China textile industry remained the trend of stablilized recovery which began from the fi rst half. And this trend seemed to be more clear. This was a general conslusion
文摘Fixed asset investment growth in China’s textile industry slowed in the first three quarters this year, mainly resulting from the yuan appreciation, the rising material and labor costs, as well as dismal overseas market hit by the subprime lending crisis. From January to September, the total fixed-assets investment in the textile industry was up 10.15% to RMB 202.269 billion year-on-year,