期刊文献+
共找到580篇文章
< 1 2 29 >
每页显示 20 50 100
Seasonal constraint of dynamic water temperature on riverine dissolved inorganic nitrogen transport in land surface modeling
1
作者 Shuang Liu Kaiheng Hu +1 位作者 Zhenghui Xie Yan Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期35-40,共6页
水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变... 水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变化对河流DIN通量变化的影响.结果表明:在考虑水温动态变化后,在30°N和30°S之间, DIN通量年振幅减小5%–25%.在中国东部地区,水温动态变化使河流DIN通量在夏季减少1%–3%,在冬季增加1%–5%,对DIN通量具有明显的季节性约束作用,表明动态水温的表达在河流DIN输送模拟中的重要性. 展开更多
关键词 陆面模拟 河流氮输送 水温变化 季节变化 全球尺度
下载PDF
Elucidating Dominant Factors Affecting Land Surface Hydrological Simulations of the Community Land Model over China 被引量:1
2
作者 Jianguo LIU Zong-Liang YANG +4 位作者 Binghao JIA Longhuan WANG Ping WANG Zhenghui XIE Chunxiang SHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第2期235-250,共16页
In order to compare the impacts of the choice of land surface model(LSM)parameterization schemes,meteorological forcing,and land surface parameters on land surface hydrological simulations,and explore to what extent t... In order to compare the impacts of the choice of land surface model(LSM)parameterization schemes,meteorological forcing,and land surface parameters on land surface hydrological simulations,and explore to what extent the quality can be improved,a series of experiments with different LSMs,forcing datasets,and parameter datasets concerning soil texture and land cover were conducted.Six simulations are run for the Chinese mainland on 0.1°×0.1°grids from 1979 to 2008,and the simulated monthly soil moisture(SM),evapotranspiration(ET),and snow depth(SD)are then compared and assessed against observations.The results show that the meteorological forcing is the most important factor governing output.Beyond that,SM seems to be also very sensitive to soil texture information;SD is also very sensitive to snow parameterization scheme in the LSM.The Community Land Model version 4.5(CLM4.5),driven by newly developed observation-based regional meteorological forcing and land surface parameters(referred to as CMFD_CLM4.5_NEW),significantly improved the simulations in most cases over the Chinese mainland and its eight basins.It increased the correlation coefficient values from 0.46 to 0.54 for the SM modeling and from 0.54 to 0.67 for the SD simulations,and it decreased the root-mean-square error(RMSE)from 0.093 to 0.085 for the SM simulation and reduced the normalized RMSE from 1.277 to 0.201 for the SD simulations.This study indicates that the offline LSM simulation using a refined LSM driven by newly developed observation-based regional meteorological forcing and land surface parameters can better model reginal land surface hydrological processes. 展开更多
关键词 hydrological simulations land surface model meteorological forcing land surface parameters UNCERTAINTY
下载PDF
On the long-term memory characteristic in land surface air temperatures:How well do CMIP6 models perform?
3
作者 Linzhi Li Fenghua Xie Naiming Yuan 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第1期41-46,共6页
利用去趋势涨落分析(DFA)方法计算序列的长程记忆性(LTM),以CRUTEM5数据集的结果作为观测参照,评估了60个参与第六次国际耦合模式比较计划(CMIP6)的气候模式对地表气温LTM的再现能力.结果表明:大部分模式可以再现全球平均地表气温序列的... 利用去趋势涨落分析(DFA)方法计算序列的长程记忆性(LTM),以CRUTEM5数据集的结果作为观测参照,评估了60个参与第六次国际耦合模式比较计划(CMIP6)的气候模式对地表气温LTM的再现能力.结果表明:大部分模式可以再现全球平均地表气温序列的LTM特征,其中AWI-ESM-1-1-LR和E3SM-1-0的模拟效果最好;60个模式均能模拟LTM随纬度带的变化;综合来说,全球水平上CNRM-CM6-1和HadGEM3-GC31-LL对地表气温LTM的模拟性能最好;多模式平均相比单一模式模拟性能更好;多模式平均与观测结果的偏差以及模式之间的模拟差异显著体现在赤道和沿海区域,这种偏差可能源于模式对海气耦合过程的模拟差异. 展开更多
关键词 长程记忆性 去趋势涨落分析 CMIP6 模式评估 地表气温
下载PDF
Spatial Variation in CO_(2) Concentration Improves the Simulated Surface Air Temperature Increase in the Northern Hemisphere
4
作者 Jing PENG Li DAN Xiba TANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1614-1628,1676-1685,共25页
The increasing concentration of atmospheric CO_(2) since the Industrial Revolution has affected surface air temperature.However,the impact of the spatial distribution of atmospheric CO_(2) concentration on surface air... The increasing concentration of atmospheric CO_(2) since the Industrial Revolution has affected surface air temperature.However,the impact of the spatial distribution of atmospheric CO_(2) concentration on surface air temperature biases remains highly unclear.By incorporating the spatial distribution of satellite-derived atmospheric CO_(2) concentration in the Beijing Normal University Earth System Model,this study investigated the increase in surface air temperature since the Industrial Revolution in the Northern Hemisphere(NH) under historical conditions from 1976-2005.In comparison with the increase in surface temperature simulated using a uniform distribution of CO_(2),simulation with a nonuniform distribution of CO_(2)produced better agreement with the Climatic Research Unit(CRU) data in the NH under the historical condition relative to the baseline over the period 1901-30.Hemispheric June-July-August(JJA) surface air temperature increased by 1.28℃ ±0.29℃ in simulations with a uniform distribution of CO_(2),by 1.00℃±0.24℃ in simulations with a non-uniform distribution of CO_(2),and by 0.24℃ in the CRU data.The decrease in downward shortwave radiation in the non-uniform CO_(2) simulation was primarily attributable to reduced warming in Eurasia,combined with feedbacks resulting from increased leaf area index(LAI) and latent heat fluxes.These effects were more pronounced in the non-uniform CO_(2)simulation compared to the uniform CO_(2) simulation.Results indicate that consideration of the spatial distribution of CO_(2)concentration can reduce the overestimated increase in surface air temperature simulated by Earth system models. 展开更多
关键词 spatial variations of CO_(2) surface air temperature Earth system model land surface albedo leaf area index
下载PDF
A Land Surface Model(IAP94) for Climate Studies PartI:Formulation and Validation in Off-line Experiments 被引量:56
5
作者 戴永久 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1997年第4期2-29,共23页
The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has ... The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM. 展开更多
关键词 land surface model Off-line Experiment VALIDATION
下载PDF
A Numerical Study on Effects of Land-Surface Heterogeneity from' Combined Approach' on Atmospheric ProcessPart II: Coupling-Model Simulations 被引量:5
6
作者 曾新民 赵鸣 苏炳凯 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第2期241-255,共15页
Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the m... Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations. 展开更多
关键词 Combined approach land surface heterogeneity Coupling model Numerical experiment
下载PDF
Impact of Spin-up Forcing on Vegetation States Simulated by a Dynamic Global Vegetation Model Coupled with a Land Surface Model 被引量:4
7
作者 李芳 曾晓东 +3 位作者 宋翔 田东晓 邵璞 张东凌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期775-788,共14页
A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the ... A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs. 展开更多
关键词 VEGETATION initial condition spin-up forcing Dynamic Global Vegetation model land surface model
下载PDF
Case Analyses and Numerical Simulation of Soil ThermalImpacts on Land Surface Energy Budget Based on anOff-Line Land Surface Model 被引量:3
8
作者 郭维栋 孙菽芬 钱永甫 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期500-512,共13页
The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are re-vealed throu... The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are re-vealed through using an off-line land surface model with a reasonable soil thermal forcing at the bottom of the soil layer. In the first experiment, the given heat flux is 5 W m<SUP>2</SUP> at the bottom of the soil layer (in depth of 6.3 m) for 3 months, while only a positive ground temperature anomaly of 0.06°C can be found compared to the control run. The anomaly, however, could reach 0.65°C if the soil thermal conductivity was one order of magnitude larger. It could be even as large as 0.81°C assuming the heat flux at bottom is 10 W m<SUP>-2</SUP>. Mean-while, an increase of about 10 W m<SUP>&#8722;2</SUP> was detected both for heat flux in soil and sensible heat on land sur-face, which is not neglectable to the short-term climate change. The results show that considerable response in land surface energy budget could be expected when the soil thermal forcing reaches a certain spatial-tem-poral scale. Therefore, land surface models should not ignore the upward heat flux from the bottom of the soil layer. Moreover, integration for a longer period of time and coupled land-atmosphere model are also necessary for the better understanding of this issue. 展开更多
关键词 Soil thermal anomaly land surface model land surface energy budget
下载PDF
A New Approach for Parameter Optimization in Land Surface Model 被引量:3
9
作者 李红祺 郭维栋 +2 位作者 孙国栋 张耀存 符淙斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1056-1066,共11页
In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observation... In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observations at Tongyu station in Jilin Province,China,combined with a sophisticated LSM (common land model,CoLM).Tongyu station is a reference site of the international Coordinated Energy and Water Cycle Observations Project (CEOP) that has studied semiarid regions that have undergone desertification,salination,and degradation since late 1960s.In this study,three key land-surface parameters,namely,soil color,proportion of sand or clay in soil,and leaf-area index were chosen as parameters to be optimized.Our study comprised three experiments:First,a single-parameter optimization was performed,while the second and third experiments performed triple-and six-parameter optimizations,respectively.Notable improvements in simulating sensible heat flux (SH),latent heat flux (LH),soil temperature (TS),and moisture (MS) at shallow layers were achieved using the optimized parameters.The multiple-parameter optimization experiments performed better than the single-parameter experminent.All results demonstrate that the CNOP method can be used to optimize expanded parameters in an LSM.Moreover,clear mathematical meaning,simple design structure,and rapid computability give this method great potential for further application to parameter optimization in LSMs. 展开更多
关键词 land surface model parameter optimization conditional nonlinear optimal perturbation (CNOP)
下载PDF
Evaluation of the WRF Model with Different Land Surface Schemes: A Drought Event Simulation in Southwest China during 2009–10 被引量:2
10
作者 HU Zu-Heng XU Zhong-Feng +2 位作者 ZHOU Ning-Fang MA Zhu-Guo LI Guo-Ping 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第2期168-173,共6页
The authors examined the performance of version 3.4.1 of the Weather Research and Forecasting Model(WRF) with various land surface schemes in simulating a severe drought event in Southwest China. Five numerical experi... The authors examined the performance of version 3.4.1 of the Weather Research and Forecasting Model(WRF) with various land surface schemes in simulating a severe drought event in Southwest China. Five numerical experiments were completed using the Noah land surface scheme, the Pleim-Xiu land surface scheme, the Noah-MP land surface schemes, the Noah- MP scheme with dynamic vegetation, and the Noah-MP scheme with dynamic vegetation and groundwater processes. In general, all the simulations reasonably reproduced the spatial and temporal variations in precipitation, but significant bias was also found, especially for the spatial pattern of simulated precipitation. The WRF simulations with the Noah-MP series land surface schemes performed slightly better than the WRF simulation with the Noah and Pleim-Xiu land surface schemes in reproducing the severe drought events in Southwest China. The leaf area index(LAI) simulated by the different land surface schemes showed significant deviations in Southwest China. The Pleim-Xiu scheme overestimated the value of LAI by a factor of two. The Noah-MP scheme with dynamical vegetation overestimated the magnitude of the annual cycle of the LAI, although the annual mean LAI was close to observations. The simulated LAI showed a long-term lower value from autumn 2009 to spring 2010 relative to normal years. This indicates that the LAI is a potential indictor to monitor drought events. 展开更多
关键词 land surface model DROUGHT Southwest China noah-mp precipitation leaf area index
下载PDF
Improving the Vegetation Dynamic Simulation in a Land Surface Model by Using a Statistical-dynamic Canopy Interception Scheme 被引量:2
11
作者 梁妙玲 谢正辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期610-618,共9页
Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this pa... Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this paper, a statistical-dynamic approach based on leaf area index and statistical canopy interception is used to parameterize the canopy interception process. The statistical-dynamic canopy interception scheme is implemented into the Community Land Model with dynamic global vegetation model (CLM-DGVM) to improve its dynamic vegetation simulation. The simulation for continental China by the land surface model with the new canopy interception scheme shows that the new one reasonably represents the precipitation intercepted by the canopy. Moreover, the new scheme enhances the water availability in the root zone for vegetation growth, especially in the densely vegetated and semi-arid areas, and improves the model's performance of potential vegetation simulation. 展开更多
关键词 canopy interception vegetation dynamics soil water land surface model
下载PDF
Simulation of the Asian Monsoon by IAP AGCM Coupled with an Advanced Land Surface Model(IAP94) 被引量:1
12
作者 曾庆存 戴永久 薛峰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第1期2-17,共16页
In this paper, the global and regional features of the seasonal variation of general circulation, and especially the Asian monsoon simulated by the Institute of Atmospheric Physics Two-level AGCM coupled with a sophis... In this paper, the global and regional features of the seasonal variation of general circulation, and especially the Asian monsoon simulated by the Institute of Atmospheric Physics Two-level AGCM coupled with a sophisticated land-surface model (IAP94-GCM) are presented and compared with the observation. The comparison is made by using the equilibrium multiyear seasonal cycle climate from a 100-year integration. In the integration sea surface temperature (SST) and sea ice are taken from the observed climatological data (with seasonal variation) because our purpose is to see the improvement of simulation due to the coupling with an advanced land surface model. Overall, the IAP94-GCM provides a reasonably realistic simulation of the interseasonal and intraseasonal climatology of the Asian monsoon and yields an important information that sheds light on the thermal underpinning and the thermodynamics of the seasonal and even multiscale variabilities associated with the Asian summer monsoon. 展开更多
关键词 Advanced land surface model Coupled model SIMULATION Asian Monsoon
下载PDF
A Land Surface Model(IAP94)for Climate Studies Part II: Implementation and Preliminary Results of Coupled Model with IAP GCM 被引量:1
13
作者 戴永久 薛峰 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第1期48-63,共16页
The Institute of Atmospheric Physics Land Surface Model (IAP94) has been incorporated into the IAP two-level atmospheric general circulation model (IAP GCM). Global and regional climatology averaged over the last 25 y... The Institute of Atmospheric Physics Land Surface Model (IAP94) has been incorporated into the IAP two-level atmospheric general circulation model (IAP GCM). Global and regional climatology averaged over the last 25 years of 100 year integrations from the IAP GCM with and without IAP94 (“bucket” scheme) is compared. The simulated results are also compared with the reanalysis data. Major findings are: \ \ (1) The IAP GCM simulation without IAP94 has extensive regions of warmer than observed surface air temperatures, while the simulation with IAP94 very much improves the surface air temperature. \ \ (2) The IAP GCM simulation with IAP94 gives improvement of the simulated precipitation pattern and intensity, especially the precipitation of East Asian summer monsoon and its intraseasonal migration of the rainbelts. \ \ (3) In five selected typical regions, for most of the surface variables such as surface air temperature, precipitation, precipitation minus evaporation, net radiation, latent heat flux and sensible heat flux, the IAP GCM with IAP94 provides better simulations. 展开更多
关键词 land surface model Coupled model Simulation
下载PDF
Validation of IAP94 Land Surface Model over the Huaihe River Basin with HUBEX Field Experiment Data 被引量:1
14
作者 杨小松 林朝晖 +1 位作者 戴永久 郭裕福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第1期139-154,共16页
Off-line experiments have been conducted with IAP94 land surface model on different surface types (cropland, forest and paddy field) in different seasons (spring, summer and autumn) over the Huaihe River basin. The si... Off-line experiments have been conducted with IAP94 land surface model on different surface types (cropland, forest and paddy field) in different seasons (spring, summer and autumn) over the Huaihe River basin. The simulated energy fluxes and canopy temperature by IAP94 agree quite well with the observations, simulation results also show that IAP94 can successfully simulate the tendency of total soil water content variation. The comparison;results between simulation and observation indicate that strong evaporation at the paddy field in summer should be paid more attention to within the land surface models, and model's performance leads to the conclusion that IAP94 is capable of reproducing the main physical mechanisms governing the land-surface processes in the East Asian semi-humid monsoon region. 展开更多
关键词 land surface process model validation off-line experiments
下载PDF
The integration of nitrogen dynamics into a land surface model. Part 1: model description and site-scale validation 被引量:2
15
作者 YANG Xiujing DAN Li +5 位作者 YANG Fuqiang PENG Jing LI Yueyue GAO Dongdong JI Jinjun HUANG Mei 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第1期50-57,共8页
Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models f... Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models for climate change.In this study,a nitrogen model,based on nitrogen transformation processes and nitrogen fluxes exchange between the atmosphere and terrestrial ecosystem,was incorporated into the Atmosphere–Vegetation Interaction Model(AVIM)to simulate the carbon cycle under nitrogen limitation.This new model,AVIM-CN,was evaluated against site-scale eddy covariance–based measurements of an alpine meadow located at Damxung station from the FLUXNET 2015 dataset.Results showed that the annual mean gross primary production simulated by AVIM-CN(0.7073 gC m^-2 d^-1)was in better agreement with the corresponding flux data(0.5407 gC m^-2 d^-1)than the original AVIM(1.1403 gC m^-2 d^-1)at Damxung station.Similarly,ecosystem respiration was also down-regulated,from 1.7695 gC m^-2 d^-1 to 1.0572 gC m^-2 d^-1,after the nitrogen processes were introduced,and the latter was closer to the observed vales(0.8034 gC m^-2 d^-1).Overall,the new results were more consistent with the daily time series of carbon and energy fluxes of observations compared to the former version without nitrogen dynamics.A model that does not incorporate the limitation effects of nitrogen nutrient availability will probably overestimate carbon fluxes by about 40%. 展开更多
关键词 Coupled carbon and nitrogen dynamics nitrogen limitation land surface model carbon–nitrogen–water cycles
下载PDF
A COMPARATIVE STUDY OF TWO LAND SURFACE SCHEMES IN WRF MODEL OVER EASTERN CHINA 被引量:1
16
作者 陈亮 马柱国 范新岗 《Journal of Tropical Meteorology》 SCIE 2012年第4期445-456,共12页
Two land surface models, Community Land Model (CLM3.5) and NOAH model, have been coupled to the Weather Research and Forecasting (WRF) model and been used to simulate the precipitation, temperature, and circulation fi... Two land surface models, Community Land Model (CLM3.5) and NOAH model, have been coupled to the Weather Research and Forecasting (WRF) model and been used to simulate the precipitation, temperature, and circulation fields, respectively, over eastern China in a typical flood year (1998). The purpose of this study is to reveal the effects of land surface changes on regional climate modeling. Comparisons of simulated results and observation data indicate that changes in land surface processes have significant impact on spatial and temporal distribution of precipitation and temperature patterns in eastern China. Coupling of the CLM3.5 to the WRF model (experiment WRF-C) substantially improves the simulation results over eastern China relative to an older version of WRF coupled to the NOAH-LSM (experiment WRF-N). It is found that the simulation of the spatial pattern of summer precipitation in WRF-C is better than in WRF-N. WRF-C also significantly reduces the summer positive bias of surface air temperature, and its simulated surface air temperature matches more closely to observations than WRF-N does, which is associated with lower sensible heat fluxes and higher latent heat fluxes in WRF-C. 展开更多
关键词 regional climate model WRF land surface model
下载PDF
Impact of forcing data and land surface properties on snow simulation in a regional climate model:a case study over the Tianshan Mountains,Central Asia
17
作者 LI Qian YANG Tao LI Lan-hai 《Journal of Mountain Science》 SCIE CSCD 2021年第12期3147-3164,共18页
Snow is a key variable that influences hydrological and climatic cycles.Land surface models employing snow physics-modules can simulate the snow accumulation and ablation processes.However,there are still uncertaintie... Snow is a key variable that influences hydrological and climatic cycles.Land surface models employing snow physics-modules can simulate the snow accumulation and ablation processes.However,there are still uncertainties in modeling snow resources over complex terrain such as mountains.This study employed the National Center for Atmospheric Research’s Weather Research and Forecasting(WRF)model coupled with the Noah-Multiparameterization(Noah-MP)land surface model to run one-year simulations to assess its ability to simulate snow across the Tianshan Mountains.Six tests were conducted based on different reanalysis forcing datasets and different land surface properties.The results indicated that the snow dynamics were reproduced in a snow hydrological year by the WRF/Noah-MP model for all of the tests.The model produced a low bias in snow depth and snow water equivalent(SWE)regardless of the forcing datasets.Additionally,the underestimation of snow depth and SWE could be relatively alleviated by modifying the land cover and vegetation parameters.However,no significant improvement in accuracy was found in the date of snow depth maximum and melt rate.The best performance was achieved using ERA5 with modified land cover and vegetation parameters(mean bias=−4.03 mm and−1.441 mm for snow depth and SWE,respectively).This study highlights the importance of selecting forcing data for snow simulation over the Tianshan Mountains. 展开更多
关键词 WRF/noah-mp model Initial and lateral boundary conditions land surface properties Snow depth Snow water equivalent
下载PDF
Spatial Downscaling Study of Land Surface Temperature Based on Multilayer Perceptron Model
18
作者 SHI Yinuo 《Journal of Landscape Research》 2021年第2期55-60,64,共7页
Land Surface Temperature (LST) plays an important role in characterizing surface energy conversion and climate.Currently,there is a contradiction between temporal resolution and spatial resolution of commonly used LST... Land Surface Temperature (LST) plays an important role in characterizing surface energy conversion and climate.Currently,there is a contradiction between temporal resolution and spatial resolution of commonly used LST data sources.With Xi’an City as the research object,Multilayer Perceptron (MLP) model was used to downscale 1,000 m × 1,000 m LST product to 250 m × 250 m based on MODIS data.The fitting effect was compared with that of traditional multiple linear regression model,and the LST retrieved from Landsat 8 OLI_TIRS was used as the reference to evaluate the accuracy.The results showed that the R~2 of LST data fitted by MLP model in the daytime and at night was above 0.85,and the predicted residuals followed the normal distribution.The model had good fitting effect,and the fitting effect of LST in the daytime was better than that at night,while the output LST was lower than the original LST.Compared with multiple linear regression model,the R~2 of MLP model was larger and the RMSE was smaller both in the daytime and at night.The MLP model had not only stronger explanatory ability,but also more accurate prediction results.After downscaling by MLP model,the spatial resolution of LST was improved,which could reflect the spatial distribution pattern of LST and landscape features of underlying surface more accurately.The test results of LST retrieved from Landsat 8 OLI_TIRS showed that the covariance of the two was positive and the correlation coefficient was 0.951 3.The MLP model achieves the expected downscaling effect well,and has important application significance in acquiring high-resolution LST. 展开更多
关键词 land surface temperature(LST) DOWNSCALING MLP model Xi’an City
下载PDF
Impacts of land use/cover change on water balance by using the SWAT model in a typical loess hilly watershed of China 被引量:2
19
作者 Zeman Liu Li Rong Wei Wei 《Geography and Sustainability》 CSCD 2023年第1期19-28,共10页
Land use/cover change(LUCC)plays a key role in altering surface hydrology and water balance,finally affect-ing the security and availability of water resources.However,mechanisms underlying LUCC determination of water... Land use/cover change(LUCC)plays a key role in altering surface hydrology and water balance,finally affect-ing the security and availability of water resources.However,mechanisms underlying LUCC determination of water-balance processes at the basin scale remain unclear.In this study,the Soil and Water Assessment Tool(SWAT)model and partial least squares regression were used to detect the effects of LUCC on hydrology and water components in the Zuli River Basin(ZRB),a typical watershed of the Yellow River Basin.In general,three recommended coefficients(R^(2)and E ns greater than 0.5,and P bias less than 20%)indicated that the output results of the SWAT model were reliable and that the model was effective for the ZRB.Then,several key findings were obtained.First,LUCC in the ZRB was characterized by a significant increase in forest(21.61%)and settlement(23.52%)and a slight reduction in cropland(-1.35%),resulting in a 4.93%increase in evapotranspiration and a clear decline in surface runoffand water yield by 15.68%and 2.95%at the whole basin scale,respectively.Second,at the sub-basin scale,surface runoffand water yield increased by 14.26%-36.15%and 5.13%-15.55%,respectively,mainly due to settlement increases.Last,partial least squares regression indicated that urbanization was the most significant contributor to runoffchange,and evapotranspiration change was mainly driven by forest expansion.These conclusions are significant for understanding the relationship between LUCC and water balance,which can provide meaningful information for managing water resources and the long-term sustainability of such watersheds. 展开更多
关键词 surface runoff EVAPOTRANSPIRATION SWAT model land use change Yellow River
下载PDF
Applications of a Surface Runoff Model with Horton and Dunne Runoff for VIC 被引量:18
20
作者 谢正辉 苏凤阁 +3 位作者 曾庆存 郭裕福 梁旭 郝振纯 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第2期165-172,共8页
Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and... Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and rainfall will result in different surface runoff generation mechanisms. For a large area (e.g., a model grid size of a regional climate model or a general circulation model), these runoff generation mechanisms are commonly present at different portions of a grid cell simultaneously. Missing one of the two major runoff generation mechanisms and failing to consider spatial soil variability can result in significant under/over estimation of surface runoff which can directly introduce large errors in soil moisture states over each model grid cell. Therefore, proper modeling of surface runoff is essential to a reasonable representation of feedbacks in a land-atmosphere system. This paper presents a new surface runoff parameterization with the Philip infiltration formulation that dynamically represents both the Horton and Dunne runoff generation mechanisms within a model grid cell. The parameterization takes into account the effects of soil heterogeneity on Horton and Dunne runoff. The new parameterization is implemented into the current version of the hydrologically based Variable Infiltration Capacity (VIC) land surface model and tested over one watershed in Pennsylvania, USA and over the Shiguanhe Basin in the Huaihe Watershed in China. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere-land coupling system, and has potential applications on large hydrological simulations and land-atmospheric interactions. It is further found that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation. 展开更多
关键词 Horton runoff Dunne runoff subgrid-scale spatial variability soil heterogeneity land surface model hydrologic model soil moisture
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部