期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A genetic algorithm for community detection in complex networks 被引量:6
1
作者 李赟 刘钢 老松杨 《Journal of Central South University》 SCIE EI CAS 2013年第5期1269-1276,共8页
A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similar... A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms. 展开更多
关键词 complex networks community detection genetic algorithm matrix encoding nodes similarity
下载PDF
Latent Co-interests' Relationship Prediction
2
作者 Feng Tan Li Li +1 位作者 Zheyu Zhang Yunlong Guo 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第4期379-386,共8页
With the development of the social media and Internet, discovering latent information from massive information is becoming particularly relevant to improving user experience. Research efforts based on preferences and ... With the development of the social media and Internet, discovering latent information from massive information is becoming particularly relevant to improving user experience. Research efforts based on preferences and relationships between users have attracted more and more attention. Predictive problems, such as inferring friend relationship and co-author relationship between users have been explored. However, many such methods are based on analyzing either node features or the network structures separately, few have tried to tackle both of them at the same time. In this paper, in order to discover latent co-interests' relationship, we not only consider users' attributes but network information as well. In addition, we propose an Interest-based Factor Graph Model (I-FGM) to incorporate these factors. Experiments on two data sets (bookmarking and music network) demonstrate that this predictive method can achieve better results than the other three methods (ANN, NB, and SVM). 展开更多
关键词 linking prediction node similarity social network factor graph model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部