The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding ...The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.展开更多
The existing various couple stress theories have been carefully restudied.The purpose is to propose a coupled Noether's theorem and to reestablish rather complete conservation laws and balance equations for co...The existing various couple stress theories have been carefully restudied.The purpose is to propose a coupled Noether's theorem and to reestablish rather complete conservation laws and balance equations for couple stress elastodynamics. The new concrete forms of various conservation laws of couple stress elasticity are derived. The precise nature of these conservation laws which result from the given invariance requirements are established. Various special cases are reduced and the results of micropolar continua may be naturally transited from the results presented in this paper.展开更多
To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constr...To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constraints in event space is presented, secondly, the Noether's theorem and the Noether's inverse theorem for the nonholonomic systems of non_Chetaev's type with unilateral constraints in event space are studied and obtained, which is based upon the invariance of the differential variational principle under the infinitesimal transformations of group, finally, an example is given to illustrate the application of the result.展开更多
This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dyn...This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.展开更多
Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were appli...Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.展开更多
By using the synmeby and the qusi-symmetry of the infinitesimal transformation of the transformation group G1 and by imposing restrictions of constraints on the transformation, the Noether's theory of constrained ...By using the synmeby and the qusi-symmetry of the infinitesimal transformation of the transformation group G1 and by imposing restrictions of constraints on the transformation, the Noether's theory of constrained Birkhoffian system has been established. The theory includes the generalized Noether's theorem obtaining the first integrals from the known symmetry and quasi-symmetry and its inverse obtaining the corresponding symmetry and quasi-symmetry from the known first integrals for the systerm.展开更多
In this paper the conservation theorems of the constrained Birkhoffian systems are studied by using the method of integrating factors. The differential equations of motion of the system are written. The definition of ...In this paper the conservation theorems of the constrained Birkhoffian systems are studied by using the method of integrating factors. The differential equations of motion of the system are written. The definition of integrating factors is given for the system. The necessary conditions for the existence of the conserved quantity for the system are studied. The conservation theorem and its inverse for the system are established. Finally, an example is given to illustrate the application of the results.展开更多
This paper proves a power balance theorem of frequency domain. It becomes another circuit law concerning power conservation after Tellegen’s theorem. Moreover the universality and importance worth of application of t...This paper proves a power balance theorem of frequency domain. It becomes another circuit law concerning power conservation after Tellegen’s theorem. Moreover the universality and importance worth of application of the theorem are introduced in this paper. Various calculation of frequency domain in nonlinear circuit possess fixed intrinsic rule. There exists the mutual influence of nonlinear coupling among various harmonics. But every harmonic component must observe individually KCL, KVL and conservation of complex power in nonlinear circuit. It is a lossless network that the nonlinear conservative system with excited source has not dissipative element. The theorem proved by this paper can directly be used to find the main harmonic solutions of the lossless circuit. The results of solution are consistent with the balancing condition of reactive power, and accord with the traditional harmonic analysis method. This paper demonstrates that the lossless network can universally produce chaos. The phase portrait is related closely to the initial conditions, thus it is not an attractor. Furthermore it also reveals the difference between the attractiveness and boundedness for chaos.展开更多
The integrating factors and conservation theorems of nonholonomic dynamical system of relative motion are studied. First, the dynamical equations of relative motion of system are written. Next, the definition of integ...The integrating factors and conservation theorems of nonholonomic dynamical system of relative motion are studied. First, the dynamical equations of relative motion of system are written. Next, the definition of integrating factors is given, and the necessary conditions for the existence of the conserved quantities are studied in detail. Then, the conservation theorem and its inverse of system are established. Finally, an example is given to illustrate the application of the result.展开更多
The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are g...The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are given, and the definition of integrating factors is given. Next, the necessary conditions for the existence of the conserved quantity are studied in detail. Finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the result.展开更多
Noether's theory of dynamical systems with unilateral constraints by introducing the generalized quasi_symmetry of the infinitesimal transformation for the transformation group G r is presented and two examples t...Noether's theory of dynamical systems with unilateral constraints by introducing the generalized quasi_symmetry of the infinitesimal transformation for the transformation group G r is presented and two examples to illustrate the application of the result are given.展开更多
The new Lagrangian of the relative motion of mechanical system is constructed, the varialional principles oj Jourdain's form of nonlinear nonlwlonomic nonpotential system in noninertial reference frame are establi...The new Lagrangian of the relative motion of mechanical system is constructed, the varialional principles oj Jourdain's form of nonlinear nonlwlonomic nonpotential system in noninertial reference frame are established, the generalized Noether's theorem of the system above is presented and proved, and the conserved quantities of system are studied.展开更多
We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical sys...We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical system is obtained. The multiple powers-series expansion of the parameter of the generators of infinitesimal transformations and the gauge function is put into a generalized Noether identity. Using the Noether theorem, we obtain an approximate conserved quantity. An example is provided to prove the existence of the approximate conserved quantity.展开更多
We discuss Noether’s theorem from a new perspective and show that the spatial continuous symmetries of a system are on one hand symmetries of the space and on the other hand are dictated by the system’s potential en...We discuss Noether’s theorem from a new perspective and show that the spatial continuous symmetries of a system are on one hand symmetries of the space and on the other hand are dictated by the system’s potential energy. The Noether’s charges arising from an infinitesimal motion, or a Killing vector field, of the space, are conserved if the Lie derivative of the potential energy by this vector field vanishes. The possible spatial symmetries of a mechanical system are listed according to the potential energy of the external forces.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXZZ11 0949)
文摘The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.
文摘The existing various couple stress theories have been carefully restudied.The purpose is to propose a coupled Noether's theorem and to reestablish rather complete conservation laws and balance equations for couple stress elastodynamics. The new concrete forms of various conservation laws of couple stress elasticity are derived. The precise nature of these conservation laws which result from the given invariance requirements are established. Various special cases are reduced and the results of micropolar continua may be naturally transited from the results presented in this paper.
文摘To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constraints in event space is presented, secondly, the Noether's theorem and the Noether's inverse theorem for the nonholonomic systems of non_Chetaev's type with unilateral constraints in event space are studied and obtained, which is based upon the invariance of the differential variational principle under the infinitesimal transformations of group, finally, an example is given to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXLX11_0961)
文摘This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.
文摘Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.
文摘By using the synmeby and the qusi-symmetry of the infinitesimal transformation of the transformation group G1 and by imposing restrictions of constraints on the transformation, the Noether's theory of constrained Birkhoffian system has been established. The theory includes the generalized Noether's theorem obtaining the first integrals from the known symmetry and quasi-symmetry and its inverse obtaining the corresponding symmetry and quasi-symmetry from the known first integrals for the systerm.
基金Project supported by the Heilongjiang Natural Science Foundation of China (Grant No 9507)
文摘In this paper the conservation theorems of the constrained Birkhoffian systems are studied by using the method of integrating factors. The differential equations of motion of the system are written. The definition of integrating factors is given for the system. The necessary conditions for the existence of the conserved quantity for the system are studied. The conservation theorem and its inverse for the system are established. Finally, an example is given to illustrate the application of the results.
文摘This paper proves a power balance theorem of frequency domain. It becomes another circuit law concerning power conservation after Tellegen’s theorem. Moreover the universality and importance worth of application of the theorem are introduced in this paper. Various calculation of frequency domain in nonlinear circuit possess fixed intrinsic rule. There exists the mutual influence of nonlinear coupling among various harmonics. But every harmonic component must observe individually KCL, KVL and conservation of complex power in nonlinear circuit. It is a lossless network that the nonlinear conservative system with excited source has not dissipative element. The theorem proved by this paper can directly be used to find the main harmonic solutions of the lossless circuit. The results of solution are consistent with the balancing condition of reactive power, and accord with the traditional harmonic analysis method. This paper demonstrates that the lossless network can universally produce chaos. The phase portrait is related closely to the initial conditions, thus it is not an attractor. Furthermore it also reveals the difference between the attractiveness and boundedness for chaos.
基金The project supported by Natural Science Foundation of Heilongjiang Province of China under Grant No. 9507
文摘The integrating factors and conservation theorems of nonholonomic dynamical system of relative motion are studied. First, the dynamical equations of relative motion of system are written. Next, the definition of integrating factors is given, and the necessary conditions for the existence of the conserved quantities are studied in detail. Then, the conservation theorem and its inverse of system are established. Finally, an example is given to illustrate the application of the result.
基金The project supported by the Natural Science Foundation of Heilongjiang Province of China under Grant No. 9507
文摘The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are given, and the definition of integrating factors is given. Next, the necessary conditions for the existence of the conserved quantity are studied in detail. Finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the result.
文摘Noether's theory of dynamical systems with unilateral constraints by introducing the generalized quasi_symmetry of the infinitesimal transformation for the transformation group G r is presented and two examples to illustrate the application of the result are given.
文摘The new Lagrangian of the relative motion of mechanical system is constructed, the varialional principles oj Jourdain's form of nonlinear nonlwlonomic nonpotential system in noninertial reference frame are established, the generalized Noether's theorem of the system above is presented and proved, and the conserved quantities of system are studied.
文摘We study the approximate conserved quantity of the weakly nonholonomic mechanical-electrical system. By means of the Lagrange-Maxwell equation, the Noether equality of the weakly nonholonomic mechanical-electrical system is obtained. The multiple powers-series expansion of the parameter of the generators of infinitesimal transformations and the gauge function is put into a generalized Noether identity. Using the Noether theorem, we obtain an approximate conserved quantity. An example is provided to prove the existence of the approximate conserved quantity.
文摘We discuss Noether’s theorem from a new perspective and show that the spatial continuous symmetries of a system are on one hand symmetries of the space and on the other hand are dictated by the system’s potential energy. The Noether’s charges arising from an infinitesimal motion, or a Killing vector field, of the space, are conserved if the Lie derivative of the potential energy by this vector field vanishes. The possible spatial symmetries of a mechanical system are listed according to the potential energy of the external forces.