期刊文献+
共找到8,968篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient 2-D MUSIC algorithm for super-resolution moving target tracking based on an FMCW radar
1
作者 Xuchong Yi Shuangxi Zhang Yuxuan Zhou 《Geodesy and Geodynamics》 EI CSCD 2024年第5期504-515,共12页
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c... Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios. 展开更多
关键词 2D-MUSIC FMCW radar Moving target tracking SUPER-RESOLUTION Algorithm optimization
下载PDF
LQTTrack:Multi-Object Tracking by Focusing on Low-Quality Targets Association
2
作者 Suya Li Ying Cao +2 位作者 Hengyi Ren Dongsheng Zhu Xin Xie 《Computers, Materials & Continua》 SCIE EI 2024年第10期1449-1470,共22页
Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowq... Multi-object tracking(MOT)has seen rapid improvements in recent years.However,frequent occlusion remains a significant challenge in MOT,as it can cause targets to become smaller or disappear entirely,resulting in lowquality targets,leading to trajectory interruptions and reduced tracking performance.Different from some existing methods,which discarded the low-quality targets or ignored low-quality target attributes.LQTTrack,with a lowquality association strategy(LQA),is proposed to pay more attention to low-quality targets.In the association scheme of LQTTrack,firstly,multi-scale feature fusion of FPN(MSFF-FPN)is utilized to enrich the feature information and assist in subsequent data association.Secondly,the normalized Wasserstein distance(NWD)is integrated to replace the original Inter over Union(IoU),thus overcoming the limitations of the traditional IoUbased methods that are sensitive to low-quality targets with small sizes and enhancing the robustness of low-quality target tracking.Moreover,the third association stage is proposed to improve the matching between the current frame’s low-quality targets and previously interrupted trajectories from earlier frames to reduce the problem of track fragmentation or error tracking,thereby increasing the association success rate and improving overall multi-object tracking performance.Extensive experimental results demonstrate the competitive performance of LQTTrack on benchmark datasets(MOT17,MOT20,and DanceTrack). 展开更多
关键词 Low-quality targets association strategy feature fusion multi-object tracking tracking-by-detection
下载PDF
WSN Mobile Target Tracking Based on Improved Snake-Extended Kalman Filtering Algorithm
3
作者 Duo Peng Kun Xie Mingshuo Liu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期28-40,共13页
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte... A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively. 展开更多
关键词 wireless sensor network(WSN)target tracking snake optimization algorithm extended Kalman filter maneuvering target
下载PDF
Multiple model PHD filter for tracking sharply maneuvering targets using recursive RANSAC based adaptive birth estimation
4
作者 DING Changwen ZHOU Di +2 位作者 ZOU Xinguang DU Runle LIU Jiaqi 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期780-792,共13页
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron... An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation. 展开更多
关键词 multitarget tracking probability hypothesis density(PHD)filter sharply maneuvering targets multiple model adaptive birth intensity estimation
下载PDF
An Effective Multiple Model Least Squares Method in Tracking of a Maneuvering Target 被引量:3
5
作者 杨位钦 贾朝晖 《Journal of Beijing Institute of Technology》 EI CAS 1995年第1期35+29-34,共7页
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki... A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent. 展开更多
关键词 Kalman filters tracking/recursive least squares maneuvering target polynomial model forgetting factor
下载PDF
Maneuvering target tracking using threshold interacting multiple model algorithm
6
作者 徐迈 山秀明 徐保国 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期440-444,共5页
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i... To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy. 展开更多
关键词 maneuvering target tracking Kalman filter interacting multiple model (IMM) threshold interacting multiple model (TIMM)
下载PDF
Target Tracking Using the Interactive Multiple Model Method 被引量:6
7
作者 张劲松 杨位钦 胡士强 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期299-304,共6页
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of... Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method. 展开更多
关键词 interactive multiple model tracking maneuvering target Kalman filter
下载PDF
Fast-moving target tracking based on mean shift and frame-difference methods 被引量:32
8
作者 Hongpeng Yin Yi Chai +1 位作者 Simon X. Yang Xiaoyan Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期587-592,共6页
The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrati... The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem. 展开更多
关键词 mean shift frame-difference method target tracking computer vision.
下载PDF
Modified joint probabilistic data association with classification-aided for multitarget tracking 被引量:9
9
作者 Ba Hongxin Cao Lei +1 位作者 He Xinyi Cheng Qun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期434-439,共6页
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are... Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid. 展开更多
关键词 multi-target tracking data association joint probabilistic data association classification information track coalescence maneuvering target.
下载PDF
Modified unscented Kalman filter using modified filter gain and variance scale factor for highly maneuvering target tracking 被引量:10
10
作者 Changyun Liu Penglang Shui +1 位作者 Gang Wei Song Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期380-385,共6页
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive... To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF. 展开更多
关键词 unscented Kalman filter (UKF) target tracking filter gain maneuvering target NONLINEARITY modified unscented Kalman filter (MUKF).
下载PDF
Bayesian target tracking based on particle filter 被引量:10
11
作者 邓小龙 谢剑英 郭为忠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期545-549,共5页
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to ... For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, ere novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one. 展开更多
关键词 nonlinear/non-Gaussian extended Kalman filter particle filter target tracking proposal function.
下载PDF
Sensor Scheduling for Target Tracking in Networks of Active Sensors 被引量:7
12
作者 XIAO Wen-Dong WU Jian-Kang +1 位作者 XIE Li-Hua DONG Liang 《自动化学报》 EI CSCD 北大核心 2006年第6期922-928,共7页
Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two tim... Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed. 展开更多
关键词 Wireless sensor network sensor scheduling target tracking active sensor
下载PDF
A multiple template approach for robust tracking of fast motion target 被引量:6
13
作者 SUN Jun HE Fa-zhi +1 位作者 CHEN Yi-lin CHEN Xiao 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第2期177-197,共21页
Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appea... Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appearance variations. A multiple template method to track fast motion target with appearance changes is presented under the framework of appearance model with Kalman filter. Firstly, we construct a multiple template appearance model, which includes both the original template and templates affinely transformed from original one. Generally speaking, appearance variations of fast motion target can be covered by affine transformation. Therefore, the affine tr templates match the target of appearance variations better than conventional models. Secondly, we present an improved Kalman filter for approx- imate estimating the motion trail of the target and a modified similarity evaluation function for exact matching. The estimation approach can reduce time complexity of the algorithm and keep accuracy in the meantime. Thirdly, we propose an adaptive scheme for updating template set to alleviate the drift problem. The scheme considers the following differences: the weight differences in two successive frames; different types of affine transformation applied to templates. Finally, experiments demonstrate that the proposed algorithm is robust to appearance varia- tion of fast motion target and achieves real-time performance on middle/low-range computing platform. 展开更多
关键词 target tracking Fast motion target Multiple template match Kalman filter forecast.
下载PDF
Energy-efficient adaptive sensor scheduling for target tracking in wireless sensor networks 被引量:9
14
作者 Wendong XIAO Sen ZHANG +1 位作者 Jianyong LIN Chen Khong THAM 《控制理论与应用(英文版)》 EI 2010年第1期86-92,共7页
Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the taskin... Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy. 展开更多
关键词 Wireless sensor network target tracking Sensor scheduling Extended Kalman filter Energy efficiency.
下载PDF
Labeled box-particle CPHD filter for multiple extended targets tracking 被引量:4
15
作者 ZOU Zhibin SONG Liping CHENG Xuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期57-67,共11页
In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with ... In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results. 展开更多
关键词 EXTENDED target MULTIPLE targetS tracking labled boxparticle cardinalized probability HYPOTHESIS density (CPHD).
下载PDF
Multiple-target tracking with adaptive sampling intervals for phased-array radar 被引量:10
16
作者 Zhenkai Zhang Jianjiang Zhou +2 位作者 Fei Wang Weiqiang Liu Hongbing Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期760-766,共7页
A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o... A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar. 展开更多
关键词 target tracking adaptive sampling interval (ASI) particle swarm optimization (PSO) grey relational grade (GRG) phased-array radar.
下载PDF
Target Tracking Algorithm Based on Meanshift and Kalman Filter 被引量:4
17
作者 Hua Li Jia Zhu 《Journal of Beijing Institute of Technology》 EI CAS 2019年第2期365-370,共6页
Directed at the problem of occlusion in target tracking,a new improved algorithm based on the Meanshift algorithm and Kalman filter is proposed.The algorithm effectively combines the Meanshift algorithm with the Kalma... Directed at the problem of occlusion in target tracking,a new improved algorithm based on the Meanshift algorithm and Kalman filter is proposed.The algorithm effectively combines the Meanshift algorithm with the Kalman filtering algorithm to determine the position of the target centroid and subsequently adjust the current search window adaptively according to the target centroid position and the previous frame search window boundary.The derived search window is more closely matched to the location of the target,which improves the accuracy and reliability of tracking.The environmental influence and other influencing factors on the algorithm are also reduced.Through comparison and analysis of the experiments,the modified algorithm demonstrates good stability and adaptability,and can effectively solve the problem of large area occlusion and similar interference. 展开更多
关键词 target tracking MEANSHIFT ALGORITHM KALMAN ALGORITHM
下载PDF
Constrained auxiliary particle filtering for bearings-only maneuvering target tracking 被引量:4
18
作者 ZHANG Hongwei XIE Weixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第4期684-695,共12页
To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft m... To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness. 展开更多
关键词 BEARINGS-ONLY maneuvering target tracking SOFT measurement constraints CONSTRAINED AUXILIARY particle filtering(CAPF)
下载PDF
Target tracking in glint noise using a MCMC particle filter 被引量:5
19
作者 HuHongtao JingZhongliang LiAnping HuShiqiang TianHongwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期305-309,共5页
In radar target tracking application, the observation noise is usually non-Gaussian, which is also referred as glint noise. The performances of conventional trackers degra de severely in the presence of glint noise. A... In radar target tracking application, the observation noise is usually non-Gaussian, which is also referred as glint noise. The performances of conventional trackers degra de severely in the presence of glint noise. An improved particle filter, Markov chain Monte Carlo particle filter (MCMC-PF), is applied to cope with radar target tracking when the measurements are perturbed by glint noise. Tracking performance of the filter is demonstrated in the present of glint noise by computer simulation. 展开更多
关键词 particle filter Markov chain Monte Carlo glint noise target tracking.
下载PDF
Maneuvering target tracking of UAV based on MN-DDPG and transfer learning 被引量:11
20
作者 Bo Li Zhi-peng Yang +2 位作者 Da-qing Chen Shi-yang Liang Hao Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期457-466,共10页
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble... Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments. 展开更多
关键词 UAVS Maneuvering target tracking Deep reinforcement learning MN-DDPG Mixed noises Transfer learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部