目的:探讨老年髋部骨折手术延迟的影响因素,构建老年髋部骨折手术延迟风险预测模型。方法:选取2019年11月至2022年11月采用手术治疗的老年髋部骨折患者的病例资料进行研究,将纳入研究的患者按照2∶1的比例随机分为训练集(用于模型构建)...目的:探讨老年髋部骨折手术延迟的影响因素,构建老年髋部骨折手术延迟风险预测模型。方法:选取2019年11月至2022年11月采用手术治疗的老年髋部骨折患者的病例资料进行研究,将纳入研究的患者按照2∶1的比例随机分为训练集(用于模型构建)和验证集(用于模型验证)。从病历系统中提取纳入患者的信息,包括年龄、性别、体质量指数、骨折类型、美国麻醉医师协会(American Society of Anesthesiologists, ASA)分级、伤前日常活动能力(activities of daily living, ADL)、是否服用影响凝血功能的药物、入院至手术时间、手术方式,是否合并精神障碍、高血压、糖尿病、呼吸系统疾病、心功能不全、肝功能不全、肾功能不全、电解质紊乱、尿酮体异常、下肢静脉血栓、凝血功能异常,以及入院后血清肿瘤坏死因子-α、C反应蛋白水平等。将训练集中的患者根据入院至手术时间分为早期手术组(入院至手术时间<48 h)和延迟手术组(入院至手术时间≥48 h)。先对2组患者的相关信息进行单因素对比分析,再对单因素分析中组间差异有统计学意义的因素进行多因素Logistic回归分析及多重共线性诊断;采用R软件基于贝叶斯网络模型构建老年髋部骨折手术延迟风险预测模型,并采用Netica软件进行贝叶斯网络模型推理。采用受试者操作特征(receiver operating characteristic, ROC)曲线评价老年髋部骨折手术延迟风险预测模型的区分度,采用校准曲线评价老年髋部骨折手术延迟风险预测模型的校准度。结果:(1)分组结果。共纳入老年髋部骨折患者318例,训练集212例、验证集106例。根据入院至手术时间,训练集中早期手术组78例、延迟手术组134例。(2)老年髋部骨折手术延迟影响因素的单因素分析结果。2组患者ASA分级、是否服用影响凝血功能的药物及是否合并精神障碍、高血压、糖尿病、呼吸系统疾病、心功能不全、电解质紊乱、凝血功能异常的比较,组间差异均有统计学意义(χ~2=3.862,P=0.049;χ~2=26.806,P=0.000;χ~2=29.852,P=0.000;χ~2=21.743,P=0.000;χ~2=25.226,P=0.000;χ~2=5.415,P=0.020;χ~2=11.683,P=0.001;χ~2=14.686,P=0.000;χ~2=6.057,P=0.014)。(3)老年髋部骨折手术延迟影响因素的多因素分析及多重共线性诊断结果。多因素Logistic回归分析结果显示,服用影响凝血功能的药物及合并精神障碍、高血压、糖尿病、呼吸系统疾病、心功能不全、电解质紊乱、凝血功能异常均是老年髋部骨折手术延迟的影响因素[β=0.328,P=0.000,OR=5.112,95%CI(2.686,9.728);β=0.322,P=0.000,OR=5.425,95%CI(2.884,10.203);β=0.302,P=0.000,OR=3.956,95%CI(2.189,7.148);β=0.312,P=0.000,OR=4.560,95%CI(2.476,8.398);β=0.291,P=0.021,OR=1.962,95%CI(1.108,3.474);β=0.296,P=0.001,OR=2.713,95%CI(1.520,4.844);β=0.303,P=0.000,OR=3.133,95%CI(1.729,5.679);β=0.296,P=0.015,OR=2.061,95%CI(1.154,3.680)];多重共线性诊断结果显示,上述影响因素均不存在共线性(VIF=1.134,VIF=1.266,VIF=1.465,VIF=1.389,VIF=1.342,VIF=1.183,VIF=1.346,VIF=1.259)。(4)基于贝叶斯网络模型的老年髋部骨折手术延迟风险预测模型的构建与推理结果。基于贝叶斯网络模型构建的老年髋部骨折手术延迟风险预测模型包括8个节点、8条有向边。模型显示,服用影响凝血功能的药物及合并精神障碍、呼吸系统疾病、电解质紊乱、凝血功能异常直接影响手术延迟的发生,合并心功能不全、高血压、糖尿病间接影响手术延迟的发生;推理结果显示,患者合并心功能不全、凝血功能异常及精神障碍时,手术延迟发生率为64.1%。(5)老年髋部骨折手术延迟风险预测模型的评价结果。采用训练集数据进行老年髋部骨折手术延迟风险预测模型评价,ROC曲线下面积为0.861[P=0.000,95%CI(0.810,0.912)],灵敏度为91.29%,特异度为93.35%;校准曲线显示其一致性指数为0.866[P=0.000,95%CI(0.702,0.943)];采用验证集数据进行老年髋部骨折手术延迟风险预测模型评价,ROC曲线下面积为0.848[P=0.000,95%CI(0.795,0.901)],灵敏度为91.62%,特异度为92.46%;校准曲线显示其一致性指数为0.879[P=0.000,95%CI(0.723,0.981)]。结论:服用影响凝血功能的药物以及合并精神障碍、高血压、糖尿病、呼吸系统疾病、心功能不全、电解质紊乱、凝血功能异常均为老年髋部骨折手术延迟的影响因素,基于上述因素构建的老年髋部骨折手术延迟风险预测模型具有较高的应用价值。展开更多
文摘目的:基于血常规和颈动脉斑块构建一种个性化nomogram风险预测模型预测颈动脉粥样硬化(carotid atherosclerosis, CAS)患者发生缺血性脑卒中(cerebral ischemic stroke, CIS)的风险。方法:选取2021年3月1日至2022年3月1日在上海市第八人民医院神经内科住院的CAS患者214例,收集患者的基本特征、血常规指标及影像学检查数据。根据是否发生缺血性脑卒中分别分为两组,随机抽取全部数据按7∶3的比例拆分为建模组和验证组。采用单因素logistic回归和lasso回归筛选CAS患者发生缺血性脑卒中的独立风险预测因子,将其导入R软件构建nomogram预测模型。ROC曲线下面积(AUC)、校准曲线和DCA决策曲线对模型进行内部验证。结果:单因素logistic回归和lasso回归分析结果显示,红细胞分布宽度、大型血小板比率、血小板计数是CAS患者发生缺血性脑卒中的独立风险预测因子(P<0.05),由于年龄对于CIS具有重要临床意义,最终也将其纳入模型。基于上述预测因子导入R软件构建nomogram预测模型并进行模型内部验证。建模组受试者工作特征曲线下面积(area under the curve, AUC)为0.644,验证组AUC为0.677,表示该nomogram模型预测能力较好。Hosmer-Lemeshow拟合优度检验(P=0.058),表明该模型具有较好的区分度。DCA曲线显示风险阈值为8%~45%时使用该模型具有临床实用价值。结论:本研究构建并验证了一个预测CAS患者发生缺血性脑卒中的nomogram风险预测模型,该模型预测能力和区分能力较好,对临床评估CAS患者发生缺血性脑卒中具有较高的临床实用价值。
文摘目的:探讨老年髋部骨折手术延迟的影响因素,构建老年髋部骨折手术延迟风险预测模型。方法:选取2019年11月至2022年11月采用手术治疗的老年髋部骨折患者的病例资料进行研究,将纳入研究的患者按照2∶1的比例随机分为训练集(用于模型构建)和验证集(用于模型验证)。从病历系统中提取纳入患者的信息,包括年龄、性别、体质量指数、骨折类型、美国麻醉医师协会(American Society of Anesthesiologists, ASA)分级、伤前日常活动能力(activities of daily living, ADL)、是否服用影响凝血功能的药物、入院至手术时间、手术方式,是否合并精神障碍、高血压、糖尿病、呼吸系统疾病、心功能不全、肝功能不全、肾功能不全、电解质紊乱、尿酮体异常、下肢静脉血栓、凝血功能异常,以及入院后血清肿瘤坏死因子-α、C反应蛋白水平等。将训练集中的患者根据入院至手术时间分为早期手术组(入院至手术时间<48 h)和延迟手术组(入院至手术时间≥48 h)。先对2组患者的相关信息进行单因素对比分析,再对单因素分析中组间差异有统计学意义的因素进行多因素Logistic回归分析及多重共线性诊断;采用R软件基于贝叶斯网络模型构建老年髋部骨折手术延迟风险预测模型,并采用Netica软件进行贝叶斯网络模型推理。采用受试者操作特征(receiver operating characteristic, ROC)曲线评价老年髋部骨折手术延迟风险预测模型的区分度,采用校准曲线评价老年髋部骨折手术延迟风险预测模型的校准度。结果:(1)分组结果。共纳入老年髋部骨折患者318例,训练集212例、验证集106例。根据入院至手术时间,训练集中早期手术组78例、延迟手术组134例。(2)老年髋部骨折手术延迟影响因素的单因素分析结果。2组患者ASA分级、是否服用影响凝血功能的药物及是否合并精神障碍、高血压、糖尿病、呼吸系统疾病、心功能不全、电解质紊乱、凝血功能异常的比较,组间差异均有统计学意义(χ~2=3.862,P=0.049;χ~2=26.806,P=0.000;χ~2=29.852,P=0.000;χ~2=21.743,P=0.000;χ~2=25.226,P=0.000;χ~2=5.415,P=0.020;χ~2=11.683,P=0.001;χ~2=14.686,P=0.000;χ~2=6.057,P=0.014)。(3)老年髋部骨折手术延迟影响因素的多因素分析及多重共线性诊断结果。多因素Logistic回归分析结果显示,服用影响凝血功能的药物及合并精神障碍、高血压、糖尿病、呼吸系统疾病、心功能不全、电解质紊乱、凝血功能异常均是老年髋部骨折手术延迟的影响因素[β=0.328,P=0.000,OR=5.112,95%CI(2.686,9.728);β=0.322,P=0.000,OR=5.425,95%CI(2.884,10.203);β=0.302,P=0.000,OR=3.956,95%CI(2.189,7.148);β=0.312,P=0.000,OR=4.560,95%CI(2.476,8.398);β=0.291,P=0.021,OR=1.962,95%CI(1.108,3.474);β=0.296,P=0.001,OR=2.713,95%CI(1.520,4.844);β=0.303,P=0.000,OR=3.133,95%CI(1.729,5.679);β=0.296,P=0.015,OR=2.061,95%CI(1.154,3.680)];多重共线性诊断结果显示,上述影响因素均不存在共线性(VIF=1.134,VIF=1.266,VIF=1.465,VIF=1.389,VIF=1.342,VIF=1.183,VIF=1.346,VIF=1.259)。(4)基于贝叶斯网络模型的老年髋部骨折手术延迟风险预测模型的构建与推理结果。基于贝叶斯网络模型构建的老年髋部骨折手术延迟风险预测模型包括8个节点、8条有向边。模型显示,服用影响凝血功能的药物及合并精神障碍、呼吸系统疾病、电解质紊乱、凝血功能异常直接影响手术延迟的发生,合并心功能不全、高血压、糖尿病间接影响手术延迟的发生;推理结果显示,患者合并心功能不全、凝血功能异常及精神障碍时,手术延迟发生率为64.1%。(5)老年髋部骨折手术延迟风险预测模型的评价结果。采用训练集数据进行老年髋部骨折手术延迟风险预测模型评价,ROC曲线下面积为0.861[P=0.000,95%CI(0.810,0.912)],灵敏度为91.29%,特异度为93.35%;校准曲线显示其一致性指数为0.866[P=0.000,95%CI(0.702,0.943)];采用验证集数据进行老年髋部骨折手术延迟风险预测模型评价,ROC曲线下面积为0.848[P=0.000,95%CI(0.795,0.901)],灵敏度为91.62%,特异度为92.46%;校准曲线显示其一致性指数为0.879[P=0.000,95%CI(0.723,0.981)]。结论:服用影响凝血功能的药物以及合并精神障碍、高血压、糖尿病、呼吸系统疾病、心功能不全、电解质紊乱、凝血功能异常均为老年髋部骨折手术延迟的影响因素,基于上述因素构建的老年髋部骨折手术延迟风险预测模型具有较高的应用价值。