Currently, transplanting mechanisms for dryland plug seedlings in China are mainly semiautomatic and have low efficiency. The rotary seedling pick-up mechanism with a planetary gear train for non-uniform intermittent ...Currently, transplanting mechanisms for dryland plug seedlings in China are mainly semiautomatic and have low efficiency. The rotary seedling pick-up mechanism with a planetary gear train for non-uniform intermittent transmission, and a concave and convex locking arc device, has a large rigid impact. To solve these problems, according to the design requirements for a dryland plug seedling transplanting mechanism, a rotary seedling pick-up mechanism of a planetary gear train with combined non-circular gear transmission of incomplete eccentric circular and noncircular gears was proposed. This has the characteristics of two-times greater fluctuation of the transmission ratio in a cycle, and can achieve a non-uniform continuous drive. Through analysis of the working principle of the seedling pick-up mechanism, its kinematics model was established. The human–computer interaction optimization method and self-developed computer-aided analysis and optimization software were used to obtain a set of parameters that satisfy the operation requirements of the seedling pick-up mechanism. According to the optimized parameters, the structure of the seedling pick-up mechanism was designed, a virtual prototype of the mechanism was created, and a physical prototype was manufactured. A virtual motion simulation of the mechanism was performed, high-speed photographic kinematics tests were conducted, and the kinematic properties of the physical prototype were investigated, whereby the correctness of the theoretical model and the optimized design of the mechanism were verified. Further, laboratory seedling pick-up tests were conducted. The success ratio of seedling pick-up was 93.8% when the seedling pick-up efficiency of the mechanism was 60 plants per minute per row, indicating that the mechanism has a high efficiency and success ratio for seedling pick-up and can be applied to a dryland plug seedling transplanter.展开更多
A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles ...A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.展开更多
The most important performance of a beating-up mechanism is that the dwelling time of the sley must ensure the completion of the weft insertion. To meet this requirement, a new non-circular combined gear train beating...The most important performance of a beating-up mechanism is that the dwelling time of the sley must ensure the completion of the weft insertion. To meet this requirement, a new non-circular combined gear train beating-up mechanism which is composed of two-stage planetary gear trains is proposed. The first-stage is a Fourier planetary gear train and the second-stage is a non-circular planetary gear train. For designing of this new mechanism, the ideal kinematic equations of the sley are constructed first. Then the kinematic model of the first-stage Fourier planetary gear train is established and the reverse solution for the pitch curves of the second-stage non-circular gears is deduced. With a computer-aided design program, the influences of several important parameters on the pitch curves of the second-stage non-circular gears are analyzed, and a set of preferable structural parameters are obtained. Finally, a test bed of this mechanism is developed and the experimental results show that this new beating-up mechanism can achieve the designed dwelling time, namely it can meet the requirements of beating-up process.展开更多
According to Hertz theory, the difference of contact stress for non-circular gears and equivalent gears is compared in the paper, a calculating method of contact stress for non-circular gears by using equivalent gears...According to Hertz theory, the difference of contact stress for non-circular gears and equivalent gears is compared in the paper, a calculating method of contact stress for non-circular gears by using equivalent gears is researched, and computing formulas of power and rotation speed for equivalent gears are deduced. A numerical simulation of contact stress for non-circular gears has also been conducted based on the finite element method. By the comparison of fitting curves, the feasibility of using equivalent gears instead of non-circular gears to calculate the contact stress is testified.展开更多
In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The ...In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The tooth profile is designed by generating cutting theory, the pure rolling mathematic model that the center line of unsymmetrical rack roll along non-circular pitch curve is built, the digital model of non-circular gear with double generating angles is created through the second development method of CAD software, and then the drive characteristic and tooth strength are analyzed. The results show that the design method for double generating angles non-circular gear proposed in this paper is feasible, which is significant to improve the bearing capacity of non-circular gear pair.展开更多
In view of the lack of systemic analysis for stepless transmission using noncircular gears, two basic noncircular gear units, an addition unit adopting differential mechanism and a multiplication unit applying a fixed...In view of the lack of systemic analysis for stepless transmission using noncircular gears, two basic noncircular gear units, an addition unit adopting differential mechanism and a multiplication unit applying a fixed gear train, are proposed. Then, the design methods of the noncircular gear pair of each unit, transmission ratio relationship, rotation angle relationship and key parameters with specific physical meanings are studied. The adjusting properties, composing strategy and varying range of transmission ratio etc. are investigated in detail for each unit. Following this, several examples of using a noncircular gear pair in the units and their manipulation technique are introduced.展开更多
The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the lin...The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the linkage mechanism.This paper proposes a new high-order non-circular gear train for an automatic scallion-seedling feeding mechanism.The proposed gear train has an asymmetrical transmission ratio;i.e.,its transmission ratio varies.This allows the mechanism’s execution component to move in a long displacement and rotate in a large rotation angle.The long displacement enables the execution component to reach the designed working position,and the large rotation angle allows it to feed a scallion in the required pose.A mathematical model for calculating the asymmetrical transmission ratio was established according to the closure requirements and the full-cycle motion of the driven gear pitch curve.Then,the parameter-design model of the new seedling-feeding mechanism was established,based on precise pose points and trajectory-shape control points.Moreover,an aided-design program was developed to obtain the parameter-solution domain of the scallion-seedling feeding mechanism.The mechanism parameters,which met the seedling-feeding function,were optimized to determine the transmission ratio,using a program and a kinematic simulation.Finally,a prototype of the mechanism was produced,and a seedling-feeding experiment was carried out.One-thousand seedlings were tested at a rate of 100 seedlings per minute,and the statistical success rate was 93.4%.Thus,the automatic scallion-seedling feeding mechanism significantly improves the e ciency of automatically transplanting scallions.展开更多
为提高分插机构的设计效率,缩短设计开发周期,该文以偏心齿轮-非圆齿轮后插旋转式分插机构为基础,并以三维软件UG6.0为设计平台,利用可视化编程语言VB.NET定制用户界面,采用NX Open for.NET的UG二次开发技术,建立该分插机构的三维参数...为提高分插机构的设计效率,缩短设计开发周期,该文以偏心齿轮-非圆齿轮后插旋转式分插机构为基础,并以三维软件UG6.0为设计平台,利用可视化编程语言VB.NET定制用户界面,采用NX Open for.NET的UG二次开发技术,建立该分插机构的三维参数化设计系统。利用该系统,通过用户界面输入主要设计参数,即可快速生成偏心齿轮-非圆齿轮后插旋转式分插机构的零件(包括非圆齿轮)和装配三维模型,实现该分插机构的三维参数化设计。展开更多
基金Supported by National Key Research and Development Program of China(Project No.2017YFD0700800)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ16E050003)+1 种基金Natural Science Foundation of China(Grant No.51505429)Science Foundation of Zhejiang Sci-Tech University(Grant No.15022011-Y)
文摘Currently, transplanting mechanisms for dryland plug seedlings in China are mainly semiautomatic and have low efficiency. The rotary seedling pick-up mechanism with a planetary gear train for non-uniform intermittent transmission, and a concave and convex locking arc device, has a large rigid impact. To solve these problems, according to the design requirements for a dryland plug seedling transplanting mechanism, a rotary seedling pick-up mechanism of a planetary gear train with combined non-circular gear transmission of incomplete eccentric circular and noncircular gears was proposed. This has the characteristics of two-times greater fluctuation of the transmission ratio in a cycle, and can achieve a non-uniform continuous drive. Through analysis of the working principle of the seedling pick-up mechanism, its kinematics model was established. The human–computer interaction optimization method and self-developed computer-aided analysis and optimization software were used to obtain a set of parameters that satisfy the operation requirements of the seedling pick-up mechanism. According to the optimized parameters, the structure of the seedling pick-up mechanism was designed, a virtual prototype of the mechanism was created, and a physical prototype was manufactured. A virtual motion simulation of the mechanism was performed, high-speed photographic kinematics tests were conducted, and the kinematic properties of the physical prototype were investigated, whereby the correctness of the theoretical model and the optimized design of the mechanism were verified. Further, laboratory seedling pick-up tests were conducted. The success ratio of seedling pick-up was 93.8% when the seedling pick-up efficiency of the mechanism was 60 plants per minute per row, indicating that the mechanism has a high efficiency and success ratio for seedling pick-up and can be applied to a dryland plug seedling transplanter.
基金Project(52175361)supported by the National Natural Science Foundation of ChinaProject(2019 CFA 041)supported by the Natural Science Foundation of Hubei Province,ChinaProject(WUT:202407002)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.
基金National Natural Science Foundation of China(Nos.51675486 51505239 51575496)
文摘The most important performance of a beating-up mechanism is that the dwelling time of the sley must ensure the completion of the weft insertion. To meet this requirement, a new non-circular combined gear train beating-up mechanism which is composed of two-stage planetary gear trains is proposed. The first-stage is a Fourier planetary gear train and the second-stage is a non-circular planetary gear train. For designing of this new mechanism, the ideal kinematic equations of the sley are constructed first. Then the kinematic model of the first-stage Fourier planetary gear train is established and the reverse solution for the pitch curves of the second-stage non-circular gears is deduced. With a computer-aided design program, the influences of several important parameters on the pitch curves of the second-stage non-circular gears are analyzed, and a set of preferable structural parameters are obtained. Finally, a test bed of this mechanism is developed and the experimental results show that this new beating-up mechanism can achieve the designed dwelling time, namely it can meet the requirements of beating-up process.
文摘According to Hertz theory, the difference of contact stress for non-circular gears and equivalent gears is compared in the paper, a calculating method of contact stress for non-circular gears by using equivalent gears is researched, and computing formulas of power and rotation speed for equivalent gears are deduced. A numerical simulation of contact stress for non-circular gears has also been conducted based on the finite element method. By the comparison of fitting curves, the feasibility of using equivalent gears instead of non-circular gears to calculate the contact stress is testified.
基金Supported by National Natural Science Foundation of China(No.51275147)
文摘In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The tooth profile is designed by generating cutting theory, the pure rolling mathematic model that the center line of unsymmetrical rack roll along non-circular pitch curve is built, the digital model of non-circular gear with double generating angles is created through the second development method of CAD software, and then the drive characteristic and tooth strength are analyzed. The results show that the design method for double generating angles non-circular gear proposed in this paper is feasible, which is significant to improve the bearing capacity of non-circular gear pair.
文摘In view of the lack of systemic analysis for stepless transmission using noncircular gears, two basic noncircular gear units, an addition unit adopting differential mechanism and a multiplication unit applying a fixed gear train, are proposed. Then, the design methods of the noncircular gear pair of each unit, transmission ratio relationship, rotation angle relationship and key parameters with specific physical meanings are studied. The adjusting properties, composing strategy and varying range of transmission ratio etc. are investigated in detail for each unit. Following this, several examples of using a noncircular gear pair in the units and their manipulation technique are introduced.
基金Supported by the National Key Research and Development Program of China(Grant No.2017YFD0700800)National Natural Science Foundation of China(Grant Nos.51775512,51975536)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ20E050003)Basic Public Welfare Technology Application Research Projects of Zhejiang Province(Grant Nos.LGN19E050002,LGN20E050006).
文摘The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the linkage mechanism.This paper proposes a new high-order non-circular gear train for an automatic scallion-seedling feeding mechanism.The proposed gear train has an asymmetrical transmission ratio;i.e.,its transmission ratio varies.This allows the mechanism’s execution component to move in a long displacement and rotate in a large rotation angle.The long displacement enables the execution component to reach the designed working position,and the large rotation angle allows it to feed a scallion in the required pose.A mathematical model for calculating the asymmetrical transmission ratio was established according to the closure requirements and the full-cycle motion of the driven gear pitch curve.Then,the parameter-design model of the new seedling-feeding mechanism was established,based on precise pose points and trajectory-shape control points.Moreover,an aided-design program was developed to obtain the parameter-solution domain of the scallion-seedling feeding mechanism.The mechanism parameters,which met the seedling-feeding function,were optimized to determine the transmission ratio,using a program and a kinematic simulation.Finally,a prototype of the mechanism was produced,and a seedling-feeding experiment was carried out.One-thousand seedlings were tested at a rate of 100 seedlings per minute,and the statistical success rate was 93.4%.Thus,the automatic scallion-seedling feeding mechanism significantly improves the e ciency of automatically transplanting scallions.
文摘为提高分插机构的设计效率,缩短设计开发周期,该文以偏心齿轮-非圆齿轮后插旋转式分插机构为基础,并以三维软件UG6.0为设计平台,利用可视化编程语言VB.NET定制用户界面,采用NX Open for.NET的UG二次开发技术,建立该分插机构的三维参数化设计系统。利用该系统,通过用户界面输入主要设计参数,即可快速生成偏心齿轮-非圆齿轮后插旋转式分插机构的零件(包括非圆齿轮)和装配三维模型,实现该分插机构的三维参数化设计。