The complex of [La 2(P MBA) 6(PHEN) 2]2H 2O (P MBA: p methylbenzoate and PHEN: 1,10 phenanthroline) was prepared and characterized by elemental analysis and IR spectroscopy. The thermal behavior of [La 2(P M...The complex of [La 2(P MBA) 6(PHEN) 2]2H 2O (P MBA: p methylbenzoate and PHEN: 1,10 phenanthroline) was prepared and characterized by elemental analysis and IR spectroscopy. The thermal behavior of [La 2(P MBA) 6(PHEN) 2]2H 2O in dynamic nitrogen atmosphere was investigated by TG DTG techniques. The results show that the thermal decomposition process of the [La 2(P MBA) 6(PHEN) 2]2H 2O occurs in five steps. The empirical kinetic model for the first step thermal decomposition obtained by Malek method is SB(m,n). The activation energy E and the pre exponential factor lnA for this step reaction are 76.4 kJ·mol -1 and 24.92, respectively.展开更多
The thermal decomposition processes of ephedrini hydrochloridum and its kinetics are studied by TG-DTG techniques. A combined method, which includes Achar method, Coats-Redfera method, and Ozawa method, is put forward...The thermal decomposition processes of ephedrini hydrochloridum and its kinetics are studied by TG-DTG techniques. A combined method, which includes Achar method, Coats-Redfera method, and Ozawa method, is put forward for determining kinetic model under non-isothermal conditions. By applying the combined method, it is determined that the thermal decomposition of ephedrini hydrochloridum is subjected to cylindrical symmetric diffusion. And the reaction function isƒ(α)=2(1-α)?, apparent activation energy (115.26±3.55) kJ·mol−1, pre-exponential factor 4.62×108 s−1. Results show that the combined method is feasible and simple.展开更多
The thermal decomposition of the strontium chloride hexahydrate and its kinetics were studied under non isothermal condition in nitrogen by thermogravimetric and derivative thermogravimetric techniques. The intermedi...The thermal decomposition of the strontium chloride hexahydrate and its kinetics were studied under non isothermal condition in nitrogen by thermogravimetric and derivative thermogravimetric techniques. The intermediate and residue for each decomposition were identified from TG curve. The non isothermal kinetic data were analyzed by the Achar method and the Coats Redfern method. The possible reaction mechanisms were suggested by comparing the kinetic parameters. The kinetic equation for the first stage can be expressed as d α /d t = A exp(- E/RT)(1-α ), the second stage, d α /d t = A exp(- E/RT)3(1-α ) 2/3 , and the third stage, d α /d t = A exp(- E/RT)3/2(1-α ) 2/3 [1-(1- α ) 1/3 ] -1 . Mathematic expressions of the kinetic compensation effects of each stage of the thermal decomposition reaction were also obtained.展开更多
The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes...The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes (SARA) fractionation method, the combustion process of SBS asphalt can be divided by Gaussian peak fitting into three main stages: oil content release, resin pyrolysis, and asphaltene and char combustion. When the heating rate increases, the mass losses of the oil content and resin pyrolysis increase, and less asphaltenes are formed at a higher temperature. The activation energy values are calculated by the Coats-Redfern method to be in the range 61.6 kJ/mol-142.9 kJ/mol. The Popescu method is used for the kinetic analysis, and the result shows that the three stages of asphalt combustion can be explained by the sphere phase boundary reaction model, the second order chemical reaction model, nucleation, and its subsequent growth model, respectively.展开更多
The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calori...The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.展开更多
The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement...The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement with the theoretical value. XRD profile demonstrates that the product of the thermal decomposition at 500℃ is LiCI. For the decomposition kinetics study, the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fired models. The decomposition process was fitted by a two-step consecutive reaction: extended Prout-Tompkins equation[Bna, f(α) is (1-α)^nα^α] followed by a lth order reaction(F1). The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol, respectively. The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005), respectively. The reaction types and activation energies were in agreement with those obtained from the isothermal method, but the exponentials were optimized for better firing and prediction.展开更多
Critical temperature(Tb) of thermal explosion for energetic materials is estimated from Semenov's thermal explosion theory and the non-isothermal kinetic equation da/dt=Aoexp(bT)[1+(T-T0)b][(a) deduced via r...Critical temperature(Tb) of thermal explosion for energetic materials is estimated from Semenov's thermal explosion theory and the non-isothermal kinetic equation da/dt=Aoexp(bT)[1+(T-T0)b][(a) deduced via reasonable hypotheses, where To is the initial point of the deviation from the baseline of DSC curve. The final formula is (Tb-Te0){ 1+1/[1+( Tb-T00)b]}=1. We can easily obtain the initial temperature(T0/) and onset temperature(Tci) from the non-isothermal DSC curves, the values of Too and Tc0 from the equation TOi or ei=T00 or c0+α1βi+a2βi^2+…+aL-2L-2βiL-2, i=1,2,…L, the value of b from the equation: In[β/(Tei-T0i)]=ln[A0/G(a)]+bTei, so as to calculate the value of Tb. The result obtained with this method coincides completely with the value of Tb obtained by Hu-Yang-Liang-Wu method.展开更多
In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Land...In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.展开更多
The kintic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 ℃, respectively, were studied by isothermal and nonisothermal gravimet...The kintic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 ℃, respectively, were studied by isothermal and nonisothermal gravimetric methods. In isothermal method, the mass loss of samples in containers of glass and aluminum was followed in temperatures of 80, 90 and 100 ℃. The kinetic of the mass loss of the samples in the aluminum container was higher than the kinetic of it in the glass container that can be related to the effects of heat transfer and catalytic of aluminm metal. Also, the presence of impurities in grade B was due to increasing of kinetic of mass loss of it versus grade A. The non-isothermal curves were obtained in range of 30-330 ℃ at heating rates of 10,15 and 20 ℃·min^(-1).The TG/DTG data were used for determination of activation energy(E_a) of mass loss of TNT samples upon degradation by using Ozawa, Kissinger, Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose(KAS) methods as model free methods. The activation energies of grades of A and B of TNT was obtained 99-120 and 66-70 kJ mol^(-1)respectively. The lower values of activation energy of the degradation reaction of grade B confirm the effect of impurities in the kinetics of mass loss of this grade.展开更多
The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition pro...The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition process of the complex was determined and its kinetics was investigated. Kinetic parameters were obtained from the analysis of TG-DTG curves by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The most probable mechanism functions of the thermal decomposition reaction for the first stage are: f(alpha) =(1-alpha)(2), g(alpha) = (1-alpha)(-1)-1. The activation energy for the first stage is 255.18 kJ/mol, the entropy of activation DeltaS is 227.32 J/mol and the Gibbs free energy of activation DeltaG is 128.04 W/mol.展开更多
The non-isothermal crystallization kinetics of polyamide 6/diamine-modified multi-walled carbon nanotube (PA6/D-MWNT) nanocomposite was investigated by differential scanning calorimetry (DSC). The modified Avrami ...The non-isothermal crystallization kinetics of polyamide 6/diamine-modified multi-walled carbon nanotube (PA6/D-MWNT) nanocomposite was investigated by differential scanning calorimetry (DSC). The modified Avrami equation, the Ozawa equation and the combined Avrami/Ozawa equation were employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. It was found that the combined Avrami/Ozawa equation could successfully describe the non-isothermal crystallization process. The results showed that D-MWNTs not only acted as effective heterogeneous nucleating agents for PA6 and noticeably increased the crystallization temperature of PA6, but also influenced the mechanism of nucleation and crystal growth of PA6 and then reduced the overall crystallization rate of the neat PA6 matrix. The crystallization activation energy for the nanocomposite sample was greater than that of the neat PA6, which indicated that the addition of D-MWNTs hindered the mobility of PA6 chain segments.展开更多
The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture s...The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture solutions before and after leaching were measured.The research of non-isothermal kinetics was evaluated by the leaching rate of Fe and the total apparent velocity equation of the non-isothermal kinetics of leaching for primary titanium-rich material by microwave heating was obtained.It is shown from the temperature-pressure curves that the high temperature and high pressure of closed leaching system are favorable to the enhancement of the leaching rate of Fe.Microwave absorption characteristics of mixture solutions before and after leaching show that there are abrupt changes of microwave absorption characteristics for 15%HCl solution and the mixture solution after leaching by 20%HCl.展开更多
The thermal decomposition of Tb_2(O-MBA)_6(PHEN)_2 (O-MBA: o-methylbenzoate;PHEN: 1,10-phenanthroline) and its kinetics were studied under the non-isothermal condition bythermogravimetry-derivative thermogravimetry (T...The thermal decomposition of Tb_2(O-MBA)_6(PHEN)_2 (O-MBA: o-methylbenzoate;PHEN: 1,10-phenanthroline) and its kinetics were studied under the non-isothermal condition bythermogravimetry-derivative thermogravimetry (TG-DTG) techniques. Kinetic parameters were obtainedfrom analysis of TG-DTG curves by the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method.The most probable mechanism function was suggested by comparing the kinetic parameters. The kineticequation for the first stage can be expressed as dα/dt = Aexp(-E/RT)·3(1 - α)^(2/3). Thelifetime equation at mass loss of 10% was deduced as lnτ= -28.7429 + 19797.795/T by isothermalthermogravimetric analysis.展开更多
The non-isothermal crystallization of poly(L-lactide) (PLLA) under quiescent and steady shear flow conditions was in situ investigated by using polarizing optical microscopy (POM) with a hot shear stage and wide...The non-isothermal crystallization of poly(L-lactide) (PLLA) under quiescent and steady shear flow conditions was in situ investigated by using polarizing optical microscopy (POM) with a hot shear stage and wide-angle X-ray diffraction (WAXD). The shear rate and the cooling rate both play a significant role in the final crystalline morphology and crystallinity. Under quiescent conditions, the morphology assumes different sized spherulites, and its crystallinity dramatically reduces with increasing the cooling rate. On the other hand, the shear flow increases the onset crystallization temperature, and enhances the final crystallinity. When the shear rate is above 5 s^-1, cylindrite-like crystals are observed, furthermore, their content depends on the cooling rate.展开更多
A method of estimating the critical rate of temperature increase of thermal explosion for the first orderautocatalytic decomposition reaction system using non-isothermal DSC is presented. Information is obtained on th...A method of estimating the critical rate of temperature increase of thermal explosion for the first orderautocatalytic decomposition reaction system using non-isothermal DSC is presented. Information is obtained on theincreasing rate of temperature in nitrocellulose containing 13.54% of nitrogen when the first order autocatalytic decomposition converts into thermal explosion.展开更多
The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by J...The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples. The difference in the exponent n between PP and PP/anhydrite composites indicated that non-isothermal kinetic crystallization corresponded to tri-dimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and PP/anhydrite composites, but the crystallization rate of PP/anhydrite composites was faster than that of PP at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PP very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The result showed that the activation energy of PP/anhydrite was greatly larger than that of PP.展开更多
In this paper, we study the low Mach number limit of a compressible nonisothermal model for nematic liquid crystals in a bounded domain. We establish the uniform estimates with respect to the Mach number, and thus pro...In this paper, we study the low Mach number limit of a compressible nonisothermal model for nematic liquid crystals in a bounded domain. We establish the uniform estimates with respect to the Mach number, and thus prove the convergence to the solution of the incompressible model for nematic liquid crystals.展开更多
The polyoxometalate (CPFX-HCl)3H3PW12O40·.8H2O was prepared and characterized by elemental analysis, IR spectra and TG-DTA-DTG. The thermal decomposition mechanism and non-isothermal kinetic parameters of the p...The polyoxometalate (CPFX-HCl)3H3PW12O40·.8H2O was prepared and characterized by elemental analysis, IR spectra and TG-DTA-DTG. The thermal decomposition mechanism and non-isothermal kinetic parameters of the polyoxometalate were obtained from the analysis of TG-DTG data using the Achar equation, Coats-Redfern equation (CR), Madhusudanan-Krishnan-Ninan equation (MKN) and Horowitz-Metzger equation (HM). And their mathematical expressions of the kinetic compensation effect were also calculated.展开更多
文摘The complex of [La 2(P MBA) 6(PHEN) 2]2H 2O (P MBA: p methylbenzoate and PHEN: 1,10 phenanthroline) was prepared and characterized by elemental analysis and IR spectroscopy. The thermal behavior of [La 2(P MBA) 6(PHEN) 2]2H 2O in dynamic nitrogen atmosphere was investigated by TG DTG techniques. The results show that the thermal decomposition process of the [La 2(P MBA) 6(PHEN) 2]2H 2O occurs in five steps. The empirical kinetic model for the first step thermal decomposition obtained by Malek method is SB(m,n). The activation energy E and the pre exponential factor lnA for this step reaction are 76.4 kJ·mol -1 and 24.92, respectively.
基金the Foundation of the Science and Technology Committee of Hubei Province(2001ABA009)
文摘The thermal decomposition processes of ephedrini hydrochloridum and its kinetics are studied by TG-DTG techniques. A combined method, which includes Achar method, Coats-Redfera method, and Ozawa method, is put forward for determining kinetic model under non-isothermal conditions. By applying the combined method, it is determined that the thermal decomposition of ephedrini hydrochloridum is subjected to cylindrical symmetric diffusion. And the reaction function isƒ(α)=2(1-α)?, apparent activation energy (115.26±3.55) kJ·mol−1, pre-exponential factor 4.62×108 s−1. Results show that the combined method is feasible and simple.
文摘The thermal decomposition of the strontium chloride hexahydrate and its kinetics were studied under non isothermal condition in nitrogen by thermogravimetric and derivative thermogravimetric techniques. The intermediate and residue for each decomposition were identified from TG curve. The non isothermal kinetic data were analyzed by the Achar method and the Coats Redfern method. The possible reaction mechanisms were suggested by comparing the kinetic parameters. The kinetic equation for the first stage can be expressed as d α /d t = A exp(- E/RT)(1-α ), the second stage, d α /d t = A exp(- E/RT)3(1-α ) 2/3 , and the third stage, d α /d t = A exp(- E/RT)3/2(1-α ) 2/3 [1-(1- α ) 1/3 ] -1 . Mathematic expressions of the kinetic compensation effects of each stage of the thermal decomposition reaction were also obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61154002 and 51078331)the China Postdoctoral Science Foundation(Grant No. 20090451471)the Natural Science Foundation of Zhejiang Province,China (Grant No. Z1110222)
文摘The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes (SARA) fractionation method, the combustion process of SBS asphalt can be divided by Gaussian peak fitting into three main stages: oil content release, resin pyrolysis, and asphaltene and char combustion. When the heating rate increases, the mass losses of the oil content and resin pyrolysis increase, and less asphaltenes are formed at a higher temperature. The activation energy values are calculated by the Coats-Redfern method to be in the range 61.6 kJ/mol-142.9 kJ/mol. The Popescu method is used for the kinetic analysis, and the result shows that the three stages of asphalt combustion can be explained by the sphere phase boundary reaction model, the second order chemical reaction model, nucleation, and its subsequent growth model, respectively.
文摘The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.
基金Supported by the National Natural Science Foundation of China(No.20071026)
文摘The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement with the theoretical value. XRD profile demonstrates that the product of the thermal decomposition at 500℃ is LiCI. For the decomposition kinetics study, the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fired models. The decomposition process was fitted by a two-step consecutive reaction: extended Prout-Tompkins equation[Bna, f(α) is (1-α)^nα^α] followed by a lth order reaction(F1). The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol, respectively. The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005), respectively. The reaction types and activation energies were in agreement with those obtained from the isothermal method, but the exponentials were optimized for better firing and prediction.
基金Supported by the National Natural Science Foundation of China (No.20573098)
文摘Critical temperature(Tb) of thermal explosion for energetic materials is estimated from Semenov's thermal explosion theory and the non-isothermal kinetic equation da/dt=Aoexp(bT)[1+(T-T0)b][(a) deduced via reasonable hypotheses, where To is the initial point of the deviation from the baseline of DSC curve. The final formula is (Tb-Te0){ 1+1/[1+( Tb-T00)b]}=1. We can easily obtain the initial temperature(T0/) and onset temperature(Tci) from the non-isothermal DSC curves, the values of Too and Tc0 from the equation TOi or ei=T00 or c0+α1βi+a2βi^2+…+aL-2L-2βiL-2, i=1,2,…L, the value of b from the equation: In[β/(Tei-T0i)]=ln[A0/G(a)]+bTei, so as to calculate the value of Tb. The result obtained with this method coincides completely with the value of Tb obtained by Hu-Yang-Liang-Wu method.
基金Hong Kong RGC Earmarked Research Grants 14305315,CUHK4041/11P and CUHK4048/13PThe Chinese University of Hong Kong,a Croucher Foundation-CAS Joint Grant,and a NSFC/RGC Joint Research Scheme(N-CUHK443/14)
文摘In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.
基金the research committee of Malek-ashtar University of Technology(MUT)
文摘The kintic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 ℃, respectively, were studied by isothermal and nonisothermal gravimetric methods. In isothermal method, the mass loss of samples in containers of glass and aluminum was followed in temperatures of 80, 90 and 100 ℃. The kinetic of the mass loss of the samples in the aluminum container was higher than the kinetic of it in the glass container that can be related to the effects of heat transfer and catalytic of aluminm metal. Also, the presence of impurities in grade B was due to increasing of kinetic of mass loss of it versus grade A. The non-isothermal curves were obtained in range of 30-330 ℃ at heating rates of 10,15 and 20 ℃·min^(-1).The TG/DTG data were used for determination of activation energy(E_a) of mass loss of TNT samples upon degradation by using Ozawa, Kissinger, Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose(KAS) methods as model free methods. The activation energies of grades of A and B of TNT was obtained 99-120 and 66-70 kJ mol^(-1)respectively. The lower values of activation energy of the degradation reaction of grade B confirm the effect of impurities in the kinetics of mass loss of this grade.
基金This project was financially supported by the Education Department of Hebei Province.]
文摘The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition process of the complex was determined and its kinetics was investigated. Kinetic parameters were obtained from the analysis of TG-DTG curves by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The most probable mechanism functions of the thermal decomposition reaction for the first stage are: f(alpha) =(1-alpha)(2), g(alpha) = (1-alpha)(-1)-1. The activation energy for the first stage is 255.18 kJ/mol, the entropy of activation DeltaS is 227.32 J/mol and the Gibbs free energy of activation DeltaG is 128.04 W/mol.
基金Guoxin Sui would like to acknowledge the financial supports of the Hundreds’ Talents Program of Chinese Academy of Sciences.
文摘The non-isothermal crystallization kinetics of polyamide 6/diamine-modified multi-walled carbon nanotube (PA6/D-MWNT) nanocomposite was investigated by differential scanning calorimetry (DSC). The modified Avrami equation, the Ozawa equation and the combined Avrami/Ozawa equation were employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. It was found that the combined Avrami/Ozawa equation could successfully describe the non-isothermal crystallization process. The results showed that D-MWNTs not only acted as effective heterogeneous nucleating agents for PA6 and noticeably increased the crystallization temperature of PA6, but also influenced the mechanism of nucleation and crystal growth of PA6 and then reduced the overall crystallization rate of the neat PA6 matrix. The crystallization activation energy for the nanocomposite sample was greater than that of the neat PA6, which indicated that the addition of D-MWNTs hindered the mobility of PA6 chain segments.
基金Project(2007CB613606)supported by the National Basic Research Program of China
文摘The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture solutions before and after leaching were measured.The research of non-isothermal kinetics was evaluated by the leaching rate of Fe and the total apparent velocity equation of the non-isothermal kinetics of leaching for primary titanium-rich material by microwave heating was obtained.It is shown from the temperature-pressure curves that the high temperature and high pressure of closed leaching system are favorable to the enhancement of the leaching rate of Fe.Microwave absorption characteristics of mixture solutions before and after leaching show that there are abrupt changes of microwave absorption characteristics for 15%HCl solution and the mixture solution after leaching by 20%HCl.
基金This project was financially supported by the Natural Science Foundation of Hebei Province (Nos. 202140 and 203148) Hebei Education Department (No. 2001121)
文摘The thermal decomposition of Tb_2(O-MBA)_6(PHEN)_2 (O-MBA: o-methylbenzoate;PHEN: 1,10-phenanthroline) and its kinetics were studied under the non-isothermal condition bythermogravimetry-derivative thermogravimetry (TG-DTG) techniques. Kinetic parameters were obtainedfrom analysis of TG-DTG curves by the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method.The most probable mechanism function was suggested by comparing the kinetic parameters. The kineticequation for the first stage can be expressed as dα/dt = Aexp(-E/RT)·3(1 - α)^(2/3). Thelifetime equation at mass loss of 10% was deduced as lnτ= -28.7429 + 19797.795/T by isothermalthermogravimetric analysis.
基金supported by the National Natural Science Foundation of China(No.50527301)
文摘The non-isothermal crystallization of poly(L-lactide) (PLLA) under quiescent and steady shear flow conditions was in situ investigated by using polarizing optical microscopy (POM) with a hot shear stage and wide-angle X-ray diffraction (WAXD). The shear rate and the cooling rate both play a significant role in the final crystalline morphology and crystallinity. Under quiescent conditions, the morphology assumes different sized spherulites, and its crystallinity dramatically reduces with increasing the cooling rate. On the other hand, the shear flow increases the onset crystallization temperature, and enhances the final crystallinity. When the shear rate is above 5 s^-1, cylindrite-like crystals are observed, furthermore, their content depends on the cooling rate.
文摘A method of estimating the critical rate of temperature increase of thermal explosion for the first orderautocatalytic decomposition reaction system using non-isothermal DSC is presented. Information is obtained on theincreasing rate of temperature in nitrocellulose containing 13.54% of nitrogen when the first order autocatalytic decomposition converts into thermal explosion.
文摘The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples. The difference in the exponent n between PP and PP/anhydrite composites indicated that non-isothermal kinetic crystallization corresponded to tri-dimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and PP/anhydrite composites, but the crystallization rate of PP/anhydrite composites was faster than that of PP at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PP very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The result showed that the activation energy of PP/anhydrite was greatly larger than that of PP.
基金supported by NSFC(11171154)supported in part by by NSFC(11671193)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper, we study the low Mach number limit of a compressible nonisothermal model for nematic liquid crystals in a bounded domain. We establish the uniform estimates with respect to the Mach number, and thus prove the convergence to the solution of the incompressible model for nematic liquid crystals.
基金the Natural Science Foundation of the Educational Commission of Hubei Province(No.J200522002 and Z200622001)
文摘The polyoxometalate (CPFX-HCl)3H3PW12O40·.8H2O was prepared and characterized by elemental analysis, IR spectra and TG-DTA-DTG. The thermal decomposition mechanism and non-isothermal kinetic parameters of the polyoxometalate were obtained from the analysis of TG-DTG data using the Achar equation, Coats-Redfern equation (CR), Madhusudanan-Krishnan-Ninan equation (MKN) and Horowitz-Metzger equation (HM). And their mathematical expressions of the kinetic compensation effect were also calculated.