期刊文献+
共找到340篇文章
< 1 2 17 >
每页显示 20 50 100
Feature Extraction Techniques of Non-Stationary Signals for Fault Diagnosis in Machinery Systems 被引量:1
1
作者 Chun-Chieh Wang Yuan Kang 《Journal of Signal and Information Processing》 2012年第1期16-25,共10页
Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to e... Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems. 展开更多
关键词 non-stationary signal Short-Time FOURIER TRANSFORM BACK Propagation NEURAL Network Time Frequency Order Spectrum
下载PDF
Discrete Time-Frequency Signal Analysis and Processing Techniques for Non-Stationary Signals
2
作者 S. Sivakumar D. Nedumaran 《Journal of Applied Mathematics and Physics》 2018年第9期1916-1927,共12页
This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two class... This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two classes of time-frequency analysis techniques are chosen for this study. One is short-time Fourier Transform (STFT) technique from linear time-frequency analysis and the other is the Wigner-Ville Distribution (WVD) from Quadratic time-frequency analysis technique. Algorithms for both these techniques are developed and implemented on non-stationary signals for spectrum analysis. The results of this study revealed that the WVD and its classes are most suitable for time-frequency analysis. 展开更多
关键词 non-stationary signal SHORT TERM FOURIER TRANSFORM WIGNER Ville Distribution Algorithm
下载PDF
Time-Frequency Entropy Analysis of Arc Signal in Non-Stationary Submerged Arc Welding
3
作者 Kuanfang He Siwen Xiao +1 位作者 Jigang Wu Guanbin Wang 《Engineering(科研)》 2011年第2期105-109,共5页
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ... The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach. 展开更多
关键词 non-stationary signal SUBMERGED ARC Welding TIME-FREQUENCY ENTROPY Stability
下载PDF
Non-Stationary Signal Segmentation and Separation from Joint Time-Frequency Plane
4
作者 Abdullah Ali Alshehri 《Journal of Signal and Information Processing》 2012年第3期339-343,共5页
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t... Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments. 展开更多
关键词 signal Segmentation TIME-FREQUENCY Distribution Short-Time FOURIER TRANSFORM non-stationary WIENER MASKING
下载PDF
Analysis of Non-stationary Signals Based on Nonlinear Chaotic Theories
5
作者 HAN Qing-peng 《International Journal of Plant Engineering and Management》 2011年第4期249-254,共6页
In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introductin... In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introducting of the corresponding algorithms, two typical different non-stationary signals with different nonlinear constraining boundaries are taken to be compared by using the above two methods respectively. The obtained results demonstrate that the apparently similar signals are distinguished effectively in a quantitative way by applying above nonlinear chaotic analyses. 展开更多
关键词 non-stationary signals surrogate data method Lyapunov exponents
下载PDF
Extraction of Signals Buried in Noise: Non-Ergodic Processes 被引量:1
6
作者 Nourédine Yahya Bey 《International Journal of Communications, Network and System Sciences》 2010年第12期907-915,共9页
In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct ti... In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements. 展开更多
关键词 BURIED signalS stationary non-Ergodic Processes Spectral Analysis White Noise Colored Noise Correlated Noise Doppler VELOCIMETRY
下载PDF
On-Line Structural Breaks Estimation for Non-stationary Time Series Models
7
作者 成孝刚 李勃 陈启美 《China Communications》 SCIE CSCD 2011年第7期95-104,共10页
Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unk... Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed. 展开更多
关键词 non-stationary signal on-line structural breaks estimation ARMA model BREAKPOINT autocorrelation function DICHOTOMY
下载PDF
An Improved Signal Segmentation Using Moving Average and Savitzky-Golay Filter 被引量:8
8
作者 Hamed Azami Karim Mohammadi Behzad Bozorgtabar 《Journal of Signal and Information Processing》 2012年第1期39-44,共6页
Analysis of long-term EEG signals needs that it be segmented into pseudo stationary epochs. That work is done by regarding to statistical characteristics of a signal such as amplitude and frequency. Time series measur... Analysis of long-term EEG signals needs that it be segmented into pseudo stationary epochs. That work is done by regarding to statistical characteristics of a signal such as amplitude and frequency. Time series measured in real world is frequently non-stationary and to extract important information from the measured time series it is significant to utilize a filter or smoother as a pre-processing step. In the proposed approach, the signal is initially filtered by Moving Average (MA) or Savitzky-Golay filter to attenuate its short-term variations. Then, changes of the amplitude or frequency of the signal is calculated by Modified Varri method which is an acceptable algorithm for segmenting a signal. By using synthetic and real EEG data, the proposed methods are compared with original approach (simple Modified Varri). The simulation results indicate the absolute advantage of the proposed methods. 展开更多
关键词 non-stationary signal Adaptive Segmentation Modified Varri MOVING AVERAGE (MA) FILTER Sa-vitzky-Golay FILTER
下载PDF
A Recursive Method of Time-Frequency Analysis for the Signal Processing of Flutter Test with Progression Variable Speed 被引量:1
9
作者 宋叔飚 裴承鸣 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第3期213-217,共5页
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr... Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method. 展开更多
关键词 flutter test with progression variable speed (FTPVS) non-stationary signal processing recursive time-frequency analysis (RTFA)
下载PDF
IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS:TIME-FREQUENCY FILTERING AND SKELETON CURVES
10
作者 王丽丽 张景绘 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第2期210-219,共10页
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is define... The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique. 展开更多
关键词 system identification nonlinear dynamic system non-stationary signal time-frequency analysis Hilbert transform
下载PDF
一种基于改进Hilbert-Huang变换的非平稳信号时频分析法及其应用 被引量:33
11
作者 毛炜 金荣洪 +1 位作者 耿军平 李家强 《上海交通大学学报》 EI CAS CSCD 北大核心 2006年第5期724-729,共6页
对于非平稳信号时频分析,提出了一种基于改进Hilbert-Huang变换(HHT)的分析方法.根据HHT的已有原理,改进了经验模式分解(EMD)过程中的筛选停止准则,提高了分解精度;给出了Hilbert谱分析的完整过程;以线性调频连续波(FMCW)信号模型作为... 对于非平稳信号时频分析,提出了一种基于改进Hilbert-Huang变换(HHT)的分析方法.根据HHT的已有原理,改进了经验模式分解(EMD)过程中的筛选停止准则,提高了分解精度;给出了Hilbert谱分析的完整过程;以线性调频连续波(FMCW)信号模型作为研究对象,结合改进的EMD分解和完整的Hilbert谱分析,通过分析时频分布特征实现高噪声背景下雷达目标信号的检测以及干扰信号的提取.仿真结果表明了改进后的HHT方法对于低信噪比非平稳信号分析的有效性. 展开更多
关键词 非平稳信号 低信噪比 瞬时频率 Hilbert—Huang变换 雷达
下载PDF
希尔伯特-黄变换地震信号时频分析与属性提取 被引量:90
12
作者 杨培杰 印兴耀 张广智 《地球物理学进展》 CSCD 北大核心 2007年第5期1585-1590,共6页
地震信号属于非线性和非平稳信号,传统的分析方法主要包括短时傅立叶变换、小波变换和Cohen类时频分布等等;希尔伯特-黄变换是分析非平稳信号的新方法,该方法的关键部分是信号的经验模态分解,通过经验模态分解,复杂的信号可以分解为有... 地震信号属于非线性和非平稳信号,传统的分析方法主要包括短时傅立叶变换、小波变换和Cohen类时频分布等等;希尔伯特-黄变换是分析非平稳信号的新方法,该方法的关键部分是信号的经验模态分解,通过经验模态分解,复杂的信号可以分解为有限的数量很少的几个固有模态函数,从而可以得到信号的希尔伯特时频谱;将该方法应用于单个的地震道数据,可以对地震道进行经验模态分解并得到希尔伯特谱,应用于地震剖面,可以得到意义更加明确的瞬时频率和瞬时振幅等地震属性,模型试算和实际应用表明了该方法的有效性. 展开更多
关键词 希尔伯特-黄变换 非平稳信号 时频分析 经验模态分解 固有模态函数
下载PDF
改进的Hilbert-Huang变换及在电磁辐射测量中的应用研究 被引量:9
13
作者 刘胜 张兰勇 +1 位作者 于大泳 张利军 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第10期2174-2179,共6页
提出了一种基于改进的希尔伯特-黄变换的电磁信号处理的新方法,该方法适合于在非平稳非线性噪声环境中的电磁辐射的测量。将非平稳信号通过经验模态分解的方法分解为有限个内蕴模式函数,利用自回归模型消除了希尔伯特-黄变换产生的边界... 提出了一种基于改进的希尔伯特-黄变换的电磁信号处理的新方法,该方法适合于在非平稳非线性噪声环境中的电磁辐射的测量。将非平稳信号通过经验模态分解的方法分解为有限个内蕴模式函数,利用自回归模型消除了希尔伯特-黄变换产生的边界效应,进而得到信号的瞬时频率。应用匹配滤波器对背景噪声进行滤除,得到实际电磁辐射信号。由于经验模态分解法的基函数是由信号自适应分解得到的,所以比傅里叶变换以及小波变换得到更好的分解效果。仿真及实验结果表明该方法在非平稳非线性的电磁信号处理中有效地滤除了背景噪声,解决了电磁辐射测量中的环境干扰问题。 展开更多
关键词 希尔伯特-黄变换 非线性非平稳信号处理 电磁辐射测量 经验模态分解 背景噪声滤除
下载PDF
基于ASW-ESPRIT的电能质量扰动分析 被引量:6
14
作者 程志友 王家琦 左靖坤 《电力系统保护与控制》 EI CSCD 北大核心 2013年第2期132-137,共6页
针对ESPRIT算法无法分析非平稳电能质量扰动的问题,提出了一种基于自适应滑窗-旋转不变子空间算法(Adaptive Sliding Window ESPRIT,ASW-ESPRIT)的时频分析方法。该方法首先根据非平稳电能质量扰动信号特征,采用自适应滑窗对信号数据进... 针对ESPRIT算法无法分析非平稳电能质量扰动的问题,提出了一种基于自适应滑窗-旋转不变子空间算法(Adaptive Sliding Window ESPRIT,ASW-ESPRIT)的时频分析方法。该方法首先根据非平稳电能质量扰动信号特征,采用自适应滑窗对信号数据进行分块,然后利用ESPRIT算法对每块中的数据进行处理,检测出频率和幅值信息,接着联合所有窗口的分析结果,从而得到整个信号的时频率分布信息。最后对电能质量干扰的非平稳信号进行了仿真实验,实验结果表明,所提出的方法适合动态电能质量扰动检测,具有实际应用前景。 展开更多
关键词 自适应滑窗 ESPRIT 电能质量扰动 时频分析 非平稳信号
下载PDF
基于VMD-Teager的非平稳振动时频特性研究 被引量:3
15
作者 李占龙 刘林霞 +2 位作者 李虹 孙宝 曹俊琴 《兵器装备工程学报》 CAS CSCD 北大核心 2021年第1期150-156,共7页
实际工程中采集的振动信号常为非平稳信号,频谱分析难以揭示该类信号的局部特征;提出基于变分模态分解(VMD)与Teager能量算子解调的非平稳振动信号时频分析法;对比研究了VMD和经验模态分解(EMD)对3种典型非平稳振动信号(含噪声、冲击和... 实际工程中采集的振动信号常为非平稳信号,频谱分析难以揭示该类信号的局部特征;提出基于变分模态分解(VMD)与Teager能量算子解调的非平稳振动信号时频分析法;对比研究了VMD和经验模态分解(EMD)对3种典型非平稳振动信号(含噪声、冲击和间断信号)的分解;结果表明:VMD方法的抗混叠能力更强,具有更强的分解能力;利用Teager算子对VMD分解的IMF分量解调,获得包含瞬时频率和瞬时幅值的时频图,可清晰刻画出原始信号的中心频率,有效揭示振动信号的局部时-频关系;该工作可为复杂机械结构振动控制和故障诊断等提供有益参考。 展开更多
关键词 变分模态分解 振动信号 时频分析 TEAGER能量算子 非平稳信号
下载PDF
大型回转支承非平稳振动信号的EEMD-PCA降噪方法 被引量:2
16
作者 封杨 黄筱调 +2 位作者 陈捷 王华 洪荣晶 《南京工业大学学报(自然科学版)》 CAS 北大核心 2015年第3期61-66,共6页
针对大型回转支承工况恶劣、背景噪声高,且振动信号非平稳的特点,提出了一种基于聚类经验模态分解-主成分分析(EEMD-PCA)的降噪方法。通过EEMD和PCA将回转支承整个寿命周期的振动信号与回转支承使用初期的振动信号进行对比,确定多个回... 针对大型回转支承工况恶劣、背景噪声高,且振动信号非平稳的特点,提出了一种基于聚类经验模态分解-主成分分析(EEMD-PCA)的降噪方法。通过EEMD和PCA将回转支承整个寿命周期的振动信号与回转支承使用初期的振动信号进行对比,确定多个回转支承振动信号中影响较大的经验模态函数(IMF),最后进行信号重构,完成降噪过程。为验证降噪效果,利用PCA对降噪信号建立了回转支承性能衰退指标。结果表明,提出的方法比现有方法得到的衰退趋势更接近回转支承实际的衰退过程,为后续寿命预测等研究提供了有效的信号处理方法。 展开更多
关键词 大型回转支承 EEMD-PCA 非平稳信号降噪 性能衰退模型
下载PDF
基于EMD-FFT的水电机组振动信号检测 被引量:6
17
作者 陈喜阳 闫海桥 孙建平 《水力发电》 北大核心 2014年第5期51-54,69,共5页
针对传统FFT分析方法存在难以提取非平稳信号的动态时频特性的瓶颈问题,引入经验模式分解EMD界定信号发生突变的时刻,通过FFT对抽取时段内的非平稳信号中突变成份展开细化分析,获取该突变信号的频率及幅值。仿真结果表明,构建的EMD-FFT... 针对传统FFT分析方法存在难以提取非平稳信号的动态时频特性的瓶颈问题,引入经验模式分解EMD界定信号发生突变的时刻,通过FFT对抽取时段内的非平稳信号中突变成份展开细化分析,获取该突变信号的频率及幅值。仿真结果表明,构建的EMD-FFT分析方法,克服了FFT分析丢失时间信息的缺点,相对精准地捕获了突变信号的时间、频率和幅值。EMD-FFT分析方法已成功应用到了水电机组非平稳信号动态检测实例,提取了动态信号的时频特征,可作为水电机组非平稳振动信号检测的一种新分析方法。 展开更多
关键词 水电机组 经验模态分解 EMD—FFT 振动 非平稳信号
下载PDF
基于Wigner-Ville分布的黄土中爆炸地运动信号传播分析 被引量:1
18
作者 蔡宗义 王占江 +4 位作者 门朝举 李运良 文潮 吴祖堂 陈立强 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2010年第A01期3411-3416,共6页
在黄土中进行7次100kgTNT当量的地下封闭爆炸试验,在1000m范围内共布设了4个测点对爆炸近区地运动信号进行测量。对实测地运动信号应用Wigner-Ville分布进行分析,给出地运动信号的时频特征和能量的分布情况。通过分析发现,黄土中爆炸地... 在黄土中进行7次100kgTNT当量的地下封闭爆炸试验,在1000m范围内共布设了4个测点对爆炸近区地运动信号进行测量。对实测地运动信号应用Wigner-Ville分布进行分析,给出地运动信号的时频特征和能量的分布情况。通过分析发现,黄土中爆炸地运动信号主要有2个中心频率,分别为4~10和11~16Hz;信号能量分布在30Hz以内,优势频率在8~15Hz。地运动信号Wigner-Ville分布的特征参数随爆心距的变化规律比较明显,地运动信号时频分布能量峰的大小随爆心距的增大以指数规律衰减,其能量峰对应的频率随爆心距的增大以对数规律减小,能量峰对应的时间随爆心距的增大大体以线性规律增大。 展开更多
关键词 爆炸力学 地运动 非平稳信号 WIGNER-VILLE分布 地下爆炸 黄土
下载PDF
基于自适应最优抛物线核函数的Wigner-21/2维时频表示算法 被引量:2
19
作者 刘义海 张效民 张炳骐 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第10期1551-1557,共7页
针对低信噪比条件下非平稳、非线性和非高斯信号的时频特征分析,提出了一种基于自适应最优抛物线核函数的Wigner-212维时频表示算法.采用依赖于特定时频点的二维时频局部模糊函数替代传统Cohen类高阶时频分析中通用的全局时频模糊函数;... 针对低信噪比条件下非平稳、非线性和非高斯信号的时频特征分析,提出了一种基于自适应最优抛物线核函数的Wigner-212维时频表示算法.采用依赖于特定时频点的二维时频局部模糊函数替代传统Cohen类高阶时频分析中通用的全局时频模糊函数;利用自适应核处理技术获得局部模糊函数的最佳抛物线核函数,以最大限度地抑制交叉项的影响,提高算法的时频分辨率和信号自适应性;通过合成信号和水声信号的仿真实验进行时频分析,并与现有时频算法加以对比.结果表明,在低信噪比条件下,所提出算法对瞬态信号的检测优势明显,能够取得优良的时频特征解析效果. 展开更多
关键词 时频表示 非平稳信号处理 时频局部模糊函数 自适应抛物线核函数
下载PDF
数值方法进展:从Fourier变换到Hilbert-Huang变换 被引量:7
20
作者 吴琛 项洪 +1 位作者 杜喜朋 周瑞忠 《福建工程学院学报》 CAS 2015年第6期511-519,共9页
论述了从Fourier变换,Gabor变换,小波变换,到Hilbert-Huang变换的理论进展与工程应用,比较了Fourier频谱与HHT边际谱的差异,并对非平稳信号的稳定性度量提出了新的指标。最后,介绍和述评了HHT的研究进展和实际应用。
关键词 HILBERT-HUANG变换 边际谱 非平稳信号 稳定性度量 研究进展
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部