Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to e...Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.展开更多
This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two class...This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two classes of time-frequency analysis techniques are chosen for this study. One is short-time Fourier Transform (STFT) technique from linear time-frequency analysis and the other is the Wigner-Ville Distribution (WVD) from Quadratic time-frequency analysis technique. Algorithms for both these techniques are developed and implemented on non-stationary signals for spectrum analysis. The results of this study revealed that the WVD and its classes are most suitable for time-frequency analysis.展开更多
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ...The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.展开更多
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t...Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.展开更多
In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introductin...In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introducting of the corresponding algorithms, two typical different non-stationary signals with different nonlinear constraining boundaries are taken to be compared by using the above two methods respectively. The obtained results demonstrate that the apparently similar signals are distinguished effectively in a quantitative way by applying above nonlinear chaotic analyses.展开更多
In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct ti...In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements.展开更多
Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unk...Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.展开更多
Analysis of long-term EEG signals needs that it be segmented into pseudo stationary epochs. That work is done by regarding to statistical characteristics of a signal such as amplitude and frequency. Time series measur...Analysis of long-term EEG signals needs that it be segmented into pseudo stationary epochs. That work is done by regarding to statistical characteristics of a signal such as amplitude and frequency. Time series measured in real world is frequently non-stationary and to extract important information from the measured time series it is significant to utilize a filter or smoother as a pre-processing step. In the proposed approach, the signal is initially filtered by Moving Average (MA) or Savitzky-Golay filter to attenuate its short-term variations. Then, changes of the amplitude or frequency of the signal is calculated by Modified Varri method which is an acceptable algorithm for segmenting a signal. By using synthetic and real EEG data, the proposed methods are compared with original approach (simple Modified Varri). The simulation results indicate the absolute advantage of the proposed methods.展开更多
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr...Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.展开更多
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is define...The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.展开更多
文摘Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.
文摘This paper presents the methodology, properties and processing of the time-frequency techniques for non-stationary signals, which are frequently used in biomedical, communication and image processing fields. Two classes of time-frequency analysis techniques are chosen for this study. One is short-time Fourier Transform (STFT) technique from linear time-frequency analysis and the other is the Wigner-Ville Distribution (WVD) from Quadratic time-frequency analysis technique. Algorithms for both these techniques are developed and implemented on non-stationary signals for spectrum analysis. The results of this study revealed that the WVD and its classes are most suitable for time-frequency analysis.
文摘The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach.
文摘Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.
基金supported by the National Natural Science Foundation of China NSFC under Grant No.10972192
文摘In the paper, two nonlinear parameter estimation methods based on chaotic theory, surrogate data method and Lyapunov exponents, are used to distinguish the difference of non-stationary signals. After brief introducting of the corresponding algorithms, two typical different non-stationary signals with different nonlinear constraining boundaries are taken to be compared by using the above two methods respectively. The obtained results demonstrate that the apparently similar signals are distinguished effectively in a quantitative way by applying above nonlinear chaotic analyses.
文摘In this paper, we propose extraction of signals buried in non-ergodic processes. It is shown that the proposed method extracts signals defined in a non-ergodic framework without averaging or smoothing in the direct time or frequency domain. Extraction is achieved independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Performances of the pro-posed extraction method and comparative results with other methods are demonstrated via experimental Doppler velocimetry measurements.
基金supported by Fund of National Science & Technology monumental projects under Grants No. 2012ZX03005012, 2011ZX03005-004-03, 2009ZX03003-007
文摘Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.
文摘Analysis of long-term EEG signals needs that it be segmented into pseudo stationary epochs. That work is done by regarding to statistical characteristics of a signal such as amplitude and frequency. Time series measured in real world is frequently non-stationary and to extract important information from the measured time series it is significant to utilize a filter or smoother as a pre-processing step. In the proposed approach, the signal is initially filtered by Moving Average (MA) or Savitzky-Golay filter to attenuate its short-term variations. Then, changes of the amplitude or frequency of the signal is calculated by Modified Varri method which is an acceptable algorithm for segmenting a signal. By using synthetic and real EEG data, the proposed methods are compared with original approach (simple Modified Varri). The simulation results indicate the absolute advantage of the proposed methods.
文摘Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.
文摘The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.