期刊文献+
共找到515篇文章
< 1 2 26 >
每页显示 20 50 100
Peripheral carbazole units-decorated MR emitter containing B−N covalent bond for highly efficient green OLEDs with low roll-off
1
作者 Danrui Wan Jianping Zhou +4 位作者 Guoyun Meng Ning Su Dongdong Zhang Lian Duan Junqiao Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第8期59-66,共8页
Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra an... Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra and high efficiency.However,there remains a scarcity of exploration concerning synthetic methods and structural derivations to expand the library of novel BN-MR emitters.Herein,we present the synthesis of a BN-MR emitter,tCz[B−N]N,through a one-pot borylation reaction directed by the amine group,achieving an impressive yield of 94%.The emitter is decorated by incorporating two 3,6-di-tbutylcarbazole(tCz)units into a B−N covalent bond doped BN-MR parent molecule via para-C−π−D and para-N−π−D conjugations.This peripheral decoration strategy enhances the reverse intersystem crossing process and shifts the emission band towards the pure green region,peaking at 526 nm with a narrowband full-width at half maximum(FWHM)of 41 nm.Consequently,organic light emitting diodes(OLEDs)employing this emitter achieved a maximum external quantum efficiency(EQEmax)value of 27.7%,with minimal efficiency roll-off.Even at a practical luminance of 1000 cd·m^(−2),the device maintains a high EQE value of 24.6%. 展开更多
关键词 MULTI-RESONANCE narrowband emission B−N covalent bond organic light emitting diodes
下载PDF
Chemical Bonds between Charged Atoms in the Even-Odd Rule and a Limitation to Eight Covalent Bonds per Atom in Centered-Cubic and Single Face-Centered-Cubic Crystals 被引量:6
2
作者 Geoffroy Auvert Marine Auvert 《Open Journal of Physical Chemistry》 2015年第4期93-105,共13页
A crystal is a highly organized arrangement of atoms in a solid, wherein a unit cell is periodically repeated to form the crystal pattern. A unit cell is composed of atoms that are connected to some of their first nei... A crystal is a highly organized arrangement of atoms in a solid, wherein a unit cell is periodically repeated to form the crystal pattern. A unit cell is composed of atoms that are connected to some of their first neighbors by chemical bonds. A recent rule, entitled the even-odd rule, introduced a new way to calculate the number of covalent bonds around an atom. It states that around an uncharged atom, the number of bonds and the number of electrons have the same parity. In the case of a charged atom on the contrary, both numbers have different parity. The aim of the present paper is to challenge the even-odd rule on chemical bonds in well-known crystal structures. According to the rule, atoms are supposed to be bonded exclusively through single-covalent bonds. A distinctive criterion, only applicable to crystals, states that atoms cannot build more than 8 chemical bonds, as opposed to the classical model, where each atom in a crystal is connected to every first neighbor without limitation. Electrical charges can be assigned to specific atoms in order to compensate for extra or missing bonds. More specifically the article considers di-atomic body-centered-cubic, tetra-atomic and dodeca-atomic single-face-centered-cubic crystals. In body-centered crystals, atoms are interconnected by 8 covalent bonds. In face-centered crystal, the unit cell contains 4 or 12 atoms. For di-element crystals, the total number of bonds for both elements is found to be identical. The neutrality of the unit cell is obtained with an opposite charge on the nearest or second-nearest neighbor. To conclude, the even-odd rule is applicable to a wide number of compounds in known cubic structures and the number of chemical bonds per atom is not related to the valence of the elements in the periodic table. 展开更多
关键词 Even-Odd RULE covalent bond SINGLE bond Crystal Solid Centered Face-Centered Unit Cell
下载PDF
Covalent Bonds Creation between Gas and Liquid Phase Change: Compatibility with Covalent and Even-Odd Rules Based on a “Specific Periodic Table for Liquids” 被引量:3
3
作者 Geoffroy Auvert 《Open Journal of Physical Chemistry》 2020年第1期68-85,共18页
A decrease in temperature will eventually turn a gas into liquid and then into a solid. Each of these phase change shows a higher degree in cohesion of molecules. While it is usually admitted that molecules in solids ... A decrease in temperature will eventually turn a gas into liquid and then into a solid. Each of these phase change shows a higher degree in cohesion of molecules. While it is usually admitted that molecules in solids form additional connections, the cohesion of molecules in liquids is usually explained by changes in kinetics of molecules. Given that the density of a solid is nearly the same than that of a liquid, the present paper assumes a different stand and considers that connections between molecules must be similar in liquids and in solids. The difference between gas, in which molecules are entirely loose, and liquid, is therefore the presence of an additional connection between gaseous molecules. This paper describes how and where these connections are built with the help of a few rules and a “specific periodic table for liquids”. The coherence of this approach is reinforced by its capacity to explain phase change of forty well-known molecules containing inorganic and organic elements. 展开更多
关键词 covalent bond Even-Odd Rule LIQUID GAS Periodic Table MOLECULE Association DISSOCIATION
下载PDF
The Even-Odd and the Isoelectronicity Rules Applied to Single Covalent Bonds in Ionic, Double-Face-Centered Cubic and Diamond-Like Crystals 被引量:6
4
作者 Geoffroy Auvert Marine Auvert 《Open Journal of Physical Chemistry》 2016年第2期21-33,共13页
Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, ... Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures;single covalent structures can be used in every case instead of the classical ionic model;covalent bonds and charges positions do not have any relation with the valence number given in the periodic table. 展开更多
关键词 covalent bond Even-Odd RULE Single bond Chemical Structure CRYSTAL Solid Ionic Crystal Face-Centered Crystal DIAMOND-LIKE
下载PDF
A New Three-dimensional Supramolecular Polymer Built from Non-covalent Bonding Interactions 被引量:3
5
作者 陈水生 乔瑞 +1 位作者 盛良全 杨松 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第4期557-562,共6页
A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. C... A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with α = 22.281(2), b = 7.3959(7), c = 24.978(3) ?, β = 90.876(10), V = 4115.6(7) ?3, Z = 8, C20H22N4O8Ni, Mr = 505.13, Dc = 1.630 g/cm3, μ = 1.001 mm-1, S = 1.080, F(000) = 2096, the final R = 0.452 and wR = 0.1152 for 9380 observed reflections (I 〉 2σ(I)). The result of X-ray diffraction analysis revealed three different kinds of Ni(II) centre mononuclear molecules in the asymmetric unit. The independent mononuclear units are bridged to form a three-dimensional supramolecular polymer by extensive hydrogen bonds and C–H… non-covalent bonding interactions. 展开更多
关键词 SYNTHESIS supramolecular polymer non-covalent bonding interactions
下载PDF
Development of the Orbital-Free Density Functional Approach: The Problem of Angles between Covalent Bonds
6
作者 Victor G. Zavodinsky Olga A. Gorkusha 《Modeling and Numerical Simulation of Material Science》 2016年第2期11-16,共6页
The Paulie’s principle is used for development of the orbital-free (OF) version of the density functional theory. On the example of the three-atomic clusters, Al<sub>3</sub>, Si<sub>3</sub>, a... The Paulie’s principle is used for development of the orbital-free (OF) version of the density functional theory. On the example of the three-atomic clusters, Al<sub>3</sub>, Si<sub>3</sub>, and C<sub>3</sub>, it is shown that the OF approach may lead to equilibrium configurations of atomic systems with both the metallic and covalent bonding. The equilibrium interatomic distances, interbonding angles and binding energies are found in good accordance with the known data. Results will be useful for developing of theoretical study of huge molecules and nanoparticles. 展开更多
关键词 Orbital-Free Density Functional covalent bonding Angular bond Dependence
下载PDF
The Even-Odd Rule on Single Covalent-Bonded Structural Formulas as a Modification of Classical Structural Formulas of Multiple-Bonded Ions and Molecules 被引量:9
7
作者 Geoffroy Auvert 《Open Journal of Physical Chemistry》 2014年第4期173-184,共12页
In organic chemistry, as defined by Abegg, Kossel, Lewis and Langmuir, compounds are normally represented using structural formulas called Lewis structures. In these structures, the octet rule is used to define the nu... In organic chemistry, as defined by Abegg, Kossel, Lewis and Langmuir, compounds are normally represented using structural formulas called Lewis structures. In these structures, the octet rule is used to define the number of covalent bonds that each atom forms with its neighbors and multiple bonds are frequent. Lewis’ octet rule has unfortunately shown limitations very early when applied to non-organic compounds: most of them remain incompatible with the “rule of eight” and location of charges is uncertain. In an attempt to unify structural formulas of octet and non-octet molecules or single-charge ions, an even-odd rule was recently proposed, together with a procedure to locate charge precisely. This even-odd rule has introduced a charge-dependent effective-valence number calculated for each atom. With this number and the number of covalent bonds of each element, two even numbers are calculated. These numbers are both used to understand and draw structuralformulas of single-covalent-bonded compounds. In the present paper, a procedure is proposed to adjust structural formulas of compounds that are commonly represented with multiple bonds. In order to keep them compatible with the even-odd rule, they will be represented using only single covalent bonds. The procedure will then describe the consequences of bond simplification on charges locations. The newly obtained representations are compared to their conventional structural formulas, i.e. single-bond representation vs. multiple-bond structures. Throughout the comparison process, charges are precisely located and assigned to specific atoms. After discussion of particular cases of compounds, the paper finally concludes that a rule limiting representations of multiplecovalent bonds to single covalent bonds, seems to be suitable for numerous known compounds. 展开更多
关键词 MULTIPLE bond SINGLE bond covalent bond Molecule Ion Even-Odd RULE Structural Formula
下载PDF
Coherence of the Even-Odd Rule with an Effective-Valence Isoelectronicity Rule for Chemical Structural Formulas: Application to Known and Unknown Single-Covalent-Bonded Compounds 被引量:5
8
作者 Geoffroy Auvert 《Open Journal of Physical Chemistry》 2014年第3期126-133,共8页
Ions or molecules are said to be isoelectronic if they are composed of different elements but have the same number of electrons, the same number of covalent bonds and the same structure. This criterion is unfortunatel... Ions or molecules are said to be isoelectronic if they are composed of different elements but have the same number of electrons, the same number of covalent bonds and the same structure. This criterion is unfortunately not sufficient to ensure that a chemical structure is a valid chemical compound. In a previous article, a procedure has been described to draw 2D valid structural formulas: the even-odd rule. This rule has been applied first to single-bonded molecules then to single-charged single-bonded ions. It covers hypovalent, hypervalent or classic Lewis’ octet compounds. The funding principle of the even-odd rule is that each atom of the compound possesses an outer-shell filled only with pairs of electrons. The application of this rule guarantees validity of any single-covalent-bond chemical structure. In the present paper, this even-odd rule and its electron-pair criterion are checked for coherence with an effective-valence isoelectronic rule using numerous known compounds having single-covalent-bond connections. The test addresses Lewis’ octet ions or molecules as well as hypovalent and hypervalent compounds. The article concludes that the even-odd rule and the effective-valence isoelectronicity rule are coherent for known single-covalent-bond chemical compounds. 展开更多
关键词 Isoelectronicity EFFECTIVE VALENCE MOLECULE Ion Even-Odd RULE Structural Formula covalent bond
下载PDF
Metal-free two-dimensional phosphorene-based electrocatalyst with covalent P-N heterointerfacial reconstruction for electrolyte-lean lithium-sulfur batteries
9
作者 Jiangqi Zhou Chengyong Shu +7 位作者 Jiawu Cui Chengxin Peng Yong Liu Weibo Hua Laura Simonelli Yuping Wu Shi Xue Dou Wei Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期175-185,共11页
The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processe... The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processes.Two-dimensional(2D)few layered black phosphorus with fully exposed atoms and high sulfur affinity can be potential lithium-sulfur battery electrocatalysts,which,however,have limitations of restricted catalytic activity and poor electrochemical/chemical stability.To resolve these issues,we developed a multifunctional metal-free catalyst by covalently bonding few layered black phosphorus nanosheets with nitrogen-doped carbon-coated multiwalled carbon nanotubes(denoted c-FBP-NC).The experimental characterizations and theoretical calculations show that the formed polarized P-N covalent bonds in c-FBP-NC can efficiently regulate electron transfer from NC to FBP and significantly promote the capture and catalysis of lithium polysulfides,thus alleviating the shuttle effect.Meanwhile,the robust 1D-2D interwoven structure with large surface area and high porosity allows strong physical confinement and fast mass transfer.Impressively,with c-FBP-NC as the sulfur host,the battery shows a high areal capacity of 7.69 mAh cm^(−2) under high sulfur loading of 8.74 mg cm^(−2) and a low electrolyte/sulfur ratio of 5.7μL mg^(−1).Moreover,the assembled pouch cell with sulfur loading of 4 mg cm^(−2) and an electrolyte/sulfur ratio of 3.5μL mg^(−1) shows good rate capability and outstanding cyclability.This work proposes an interfacial and electronic structure engineering strategy for fast and durable sulfur electrochemistry,demonstrating great potential in lithium-sulfur batteries. 展开更多
关键词 black phosphorus electronic structure high sulfur loading interfacial covalent bonds lean electrolyte
下载PDF
Covalent and Ionic Bonding between Tannin and Collagen in Leather Making and Shrinking:A MALDI-ToF Study 被引量:3
10
作者 Antonio Pizzi 《Journal of Renewable Materials》 SCIE EI 2021年第8期1345-1364,共20页
Collagen powder hydrolysates were reacted with a solution of commercial mimosa bark tannin extract.The mixture was prepared at ambient temperature and prepared at 80°C to determine what reactions,if any,did occur... Collagen powder hydrolysates were reacted with a solution of commercial mimosa bark tannin extract.The mixture was prepared at ambient temperature and prepared at 80°C to determine what reactions,if any,did occur between the collagen protein through its amino acids and the polyphenolic condensed tannin.The reaction products obtained were analyzed by matrix assisted laser desorption ionization time-of-flight(MALDI ToF)mass spectrometry.Reactions between the two materials did appear to occur,with the formation of a relatively small proportion of covalent and ionic linkages at ambient temperature but a considerable proportion of covalent linkages tannin-protein amino acids and the disappearance of ionic bonds.The linkages between the two materials appeared to be by amination of the phenolic–OHs of the tannin by the amino groups of the non-skeletal side chains of arginine,and by esterification by the–COOH groups of glutamic and aspartic acid of the aliphatic alcohol-OH on the C3 site of the flavonoid units heterocycle of the tannin.The proportion of covalent linkages increases markedly and predominate with increasing temperatures.This tightening of the tannin-protein covalent network formed may be an additional contributing factor both to leather wear resistance and performance as well to leather shrinking when this is subjected to excessive temperatures. 展开更多
关键词 LEATHER collagen vegetal tannins TANNING tannin-protein reactions covalent bonds leather cross-linking leather shrinkage MALDI
下载PDF
Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution
11
作者 Chao Li Shuo Wang +8 位作者 Yuan Liub Xihe Huang Yan Zhuang Shuhong Wu Ying Wang Na Wen Kaifeng Wu Zhengxin Ding Jinlin Long 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期164-175,共12页
Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen ... Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis. 展开更多
关键词 covalent organic framework Internal molecular electric field Internal bond electric field PHOTOCATALYSIS Hydrogen evolution
下载PDF
Introducing an Extended Covalent Bond between Oxygen Atoms with an OXO-Shape in Ions and Molecules: Compatibility with the Even-Odd and the Isoelectronicity Rules 被引量:3
12
作者 Geoffroy Auvert Marine Auvert 《Open Journal of Physical Chemistry》 2016年第3期67-77,共12页
Building on the recent success of the even-odd rule, the present paper explores its implications by studying the very specific case of OXO compounds. These compounds are usually represented with double bonds linking t... Building on the recent success of the even-odd rule, the present paper explores its implications by studying the very specific case of OXO compounds. These compounds are usually represented with double bonds linking two oxygen atoms to a central atom—as in carbon dioxyde—yet can sometimes be drawn in a triangular structure, such as in calcium dioxyde. Measurement data moreover indicate that most OXO compounds have an angle around 120° between oxygen atoms, although that seems incompatible with triangular representations. The aim here is to unify these commonly admitted representations by linking oxygen atoms through a single bond that is longer than usual covalent bonds: an “elongated bond”. This elongated bond has the interesting effect of suppressing the need for double bonds between oxygen and the central atom. The elongated bond concept is applied to about a hundred of molecules and ions and methodically compared to classical representations. It is shown that this new representation, associated to the even-odd rule, is compatible with all studied compounds and can be used in place of their classical drawings. Its usage greatly simplifies complex concepts like resonance and separated charges in gases. Elongated bonds are also shown to be practicable with the isoelectronic rule as well as isomers, and throughout chemical reactions. This study of an especially long and wide angle bond confirms the versatility of the even-odd rule: it is not limited to compounds with short covalent bonds and can include OO covalent bond lengths of more than 200 pm and with OXO angles above 90°. 展开更多
关键词 Elongated bond covalent bond Even-Odd Double bond Isoelectronicity RULES Chemistry IONS MOLECULE
下载PDF
Basic Steps in Chemical Dissociation of Gaseous Molecules Using an Even-Odd Rule, a Specifically Adapted Periodic Table and a Covalent Bonding Rule 被引量:1
13
作者 Geoffroy Auvert 《Open Journal of Physical Chemistry》 2019年第2期88-105,共18页
When writing equations of chemical dissociation, students and scholars are taught two fundamental rules to balance the equation. On both sides of the equation, the types of elements and their quantity are conserved, a... When writing equations of chemical dissociation, students and scholars are taught two fundamental rules to balance the equation. On both sides of the equation, the types of elements and their quantity are conserved, as well as the global electrical charge. This paper introduces additional methods during dissociation of gaseous compounds, to precisely describe how electrical charges locally move and how bonding structures are modified. Specific rules revolving around electrons pairs displacements are developed and applied to about 150 dissociations of small gaseous molecules using atoms from the three first rows of the periodic table. Results obtained tend to demonstrate the relevance of these tools for chemists. 展开更多
关键词 Chemistry covalent bonds Even-Odd RULE covalent RULE MOLECULE DISSOCIATION Gas Charge Position Ion Periodic Table
下载PDF
Hydrogen-bonded Three-Dimensional Networks Encapsulating One-dimensional Covalent Chains: [Cu(3-ampy)(H_2O)_4](SO_4)·(H_2O) (3-ampy = 3-Aminopyridine)
14
作者 潘万龙 黄坤林 +1 位作者 许颜清 胡长文 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第7期822-826,共5页
A three-dimensional complex [Cu(3-ampy)(HEO)4](SO4)·(H2O) (3-ampy = 3-amino- pyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P1, a = 7.675(2),... A three-dimensional complex [Cu(3-ampy)(HEO)4](SO4)·(H2O) (3-ampy = 3-amino- pyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P1, a = 7.675(2), b = 8.225(3), c = 10.845(3)A, α= 86.996(4), β = 76.292(4), γ= 68.890(4)°, V = 620.0(3)A^3, Z = 2, Dc = 1.841 g/cm^3, F(000) = 354 and μ = 1.971 mm^-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I 〉 2a(/)). The structure consists of [Cu(3-ampy)(H2O)4]^2+ cations, SO4^2- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO4^2- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO4^2- anions to coordinate water extend the 2D framework into a 3D network. 展开更多
关键词 three-dimension covalent chains 3-aminopyridine hydrogen bonds π-π stacking
下载PDF
Synthesis and Luminescence Properties of SBA-15 Functionalized with Covalently Bonded Terbium-Benzoic Acid Complex
15
作者 Peng Chunyun Zhang Hongjie +5 位作者 Liu Fengwei Meng Qinguo Fu Lianshe Sun Lining Guo Junfang Yu Jiangbo 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第z1期147-148,共2页
Novel hybrid materials containing covalently bonded Terbium-benzoic acid complex in mesoporous silicaSBA-15 (denoted as Tb-SBA-15 ) were prepared via co-condensation of tetrethoxysilane (TEOS) and N-(4-benzoicacid-yl)... Novel hybrid materials containing covalently bonded Terbium-benzoic acid complex in mesoporous silicaSBA-15 (denoted as Tb-SBA-15 ) were prepared via co-condensation of tetrethoxysilane (TEOS) and N-(4-benzoicacid-yl), N'-(propyltriethoxysilyl) urea (denoted as PABI).XRD, FTIR and luminescence spectroscopy were employed to characterize Tb-SBA-15.When monitored by the ligand absorption wavelength (270 nm), Tb-SBA-15 displays the emission of Tb3+ (5D4→7Fj (j = 6, 5, 4, 3 ) transition) due to the energy transfer from the ligands to Tb3+. 展开更多
关键词 SBA-15 covalently bonded terbium complex rare earths
下载PDF
Tuning Lithiophilicity and Stability of 3D Conductive Scaffold via Covalent Ag-S Bond for High-Performance Lithium Metal Anode
16
作者 Xue Liang Li Shaozhuan Huang +8 位作者 Dong Yan Jian Zhang Daliang Fang Yew Von Lim Ye Wang Tian Chen Li Yifan Li Lu Guo Hui Ying Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期234-241,共8页
Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an i... Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an interlayer-bridged 3D lithiophilic rGO-Ag-S-CNT composite is proposed to guide uniform and stable Li plating/stripping.The 3D lithiophilic rGO-Ag-S-CNT host is fabricated by incorporating Ag-modified reduced graphene oxide(rGO)with S-doped carbon nanotube(CNT),where the rGO and CNT are closely connected via robust Ag-S covalent bond.This strong Ag-S bond could enhance the structural stability and electrical connection between rGO and CNT,significantly improving the electrochemical kinetics and uniformity of current distribution.Moreover,density functional theory calculation indicates that the introduction of Ag-S bond could further boost the binding energy between Ag and Li,which promotes homogeneous Li nucleation and growth.Consequently,the rGO-Ag-S-CNT-based anode achieves a lower overpotential(7.3 mV at 0.5 mA cm^(−2)),higher Coulombic efficiency(98.1%at 0.5 mA cm^(−2)),and superior long cycling performance(over 500 cycles at 2 mA cm−2)as compared with the rGO-Ag-CNT-and rGO-CNT-based anodes.This work provides a universal avenue and guidance to build a robust Li metal host via constructing a strong covalent bond,effectively suppressing the Li dendrites growth to prompt the development of Li metal battery. 展开更多
关键词 Ag-S covalent bond electrochemical performances Li dendrite suppression Li metal anode
下载PDF
Some Success Applications for Local-Realism Quantum Mechanics: Nature of Covalent-Bond Revealed and Quantitative Analysis of Mechanical Equilibrium for Several Molecules
17
作者 Runsheng Tu 《Journal of Modern Physics》 2014年第6期309-318,共10页
With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated... With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated through the logical method of establishing an accurate mechanical equilibrium equation describing the molecular structure, then solving the strict solutions of this mechanical equation and the corresponding wave equation. The results (bond length and dissociation energy) are in good agreement with observed results—i.e. if it is only coincidence, there should not be such a high probability of agreement between calculated and observed results. The method of local realism quantum mechanics is no longer the semi-empirical method. The method to calculate the electron pairing energy uses a linear regression of the ionization energy obtained through experiment. Nonetheless, it is exciting that there are diatomic molecules such as Na2, K2 and asymmetric HF molecules that possess a non-zero non-bonding electron number in the calculation examples. Moreover, the molecular structures are very intuitive, and the calculation method is much simpler than existing methods. 展开更多
关键词 LOCAL REALISM Quantum Mechanics Large-Scale Elastic Ring Phase Trajectory bond Length Dissociation Energy NATURE of covalent bond
下载PDF
Covalent bonding and J–J mixing effects on the EPR parameters of Er^(3+) ions in GaN crystal
18
作者 柴瑞鹏 李隆 +1 位作者 梁良 庞庆 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期435-439,共5页
The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be... The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored. 展开更多
关键词 EPR parameters covalent bonding effect J–J mixing effect rare-earth ion Er3+
下载PDF
Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO_(2) separation 被引量:3
19
作者 Haoqing Xu Wenyan Feng +4 位作者 Menglong Sheng Ye Yuan Bo Wang Jixiao Wang Zhi Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期152-160,共9页
Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in... Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in TFC membranes is the main problem.In this work,covalent organic frameworks(COFs,TpPa-1)with rich ANHA groups were incorporated into polyamide(PA)segment via in situ interfacial polymerization to prepare defect-free TFC membranes for CO_(2)/N_(2)separation.The formed covalent bonds between TpPa-1 and PA strengthen the interaction between nanofillers and polymers,thereby enhancing compatibility.Besides,the incorporated COFs disturb the rigid structure of the PA layer,and provide fast CO_(2)transfer channels.The incorporated COFs also increase the content of effective carriers,which enhances the CO_(2)facilitated transport.Consequently,in CO_(2)/N_(2)mixed gas separation test,the optimal TFC(TpPa_(0.025)-PIP-TMC/m PSf)membrane exhibits high CO_(2)permeance of 854 GPU and high CO_(2)/N_(2)selectivity of 148 at 0.15 MPa,CO_(2)permeance of 456 GPU(gas permeation unit)and CO_(2)/N_(2)selectivity of 92 at 0.5 MPa.In addition,the Tp Pa_(0.025)-PIP-TMC/m PSf membrane also achieves high permselectivty in CO_(2)/CH_(4)mixed gas separation test.Finally,the optimal TFC membrane showes good stability in the simulated flue gas test,revealing the application potential for CO_(2)capture from flue gas. 展开更多
关键词 covalent organic frameworks CO_(2)/N_(2)separation In situ interfacial polymerization Compatibility covalent bonds
下载PDF
The Influence of Bond Valence on Bond Covalency in RMn_2O_5 (R=La, Pr, Nd, Sin, Eu) 被引量:1
20
作者 Zhi Jian WU Si Yuan ZHANG(Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022) 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第1期91-94,共4页
The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phil... The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phillips. Van Vechten, Levine and Tanaka scheme. The resultsindicate that larger valences usually result in higher bond covalencies, in good agreement with thepoint that the excess charge in the bonding region is the origin of formation of bond covalency.Other factors, such as oxidation state of elements, only make a small contribution to bondcovalency. 展开更多
关键词 bond valence bond covalency semiempirical method RMn_2O_5
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部