针对加权局部线性嵌入(Weighted Locally Linear Embedding,WLLE)算法不能充分挖掘样本类别信息以及传统流形学习算法中利用已有训练样本流形邻域关系近似得到测试样本低维嵌入的低精确性,提出了基于监督加权局部线性嵌入(Supervised We...针对加权局部线性嵌入(Weighted Locally Linear Embedding,WLLE)算法不能充分挖掘样本类别信息以及传统流形学习算法中利用已有训练样本流形邻域关系近似得到测试样本低维嵌入的低精确性,提出了基于监督加权局部线性嵌入(Supervised Weighted Locally Linear Embedding,S-WLLE)算法和支持向量机回归(Support Vector Regression,SVR)的植物叶片图像识别方法。首先利用叶片样本监督距离代替WLLE算法中的欧式距离,对训练样本进行降维;然后学习训练样本已有数据得到SVR模型,预测测试样本的低维嵌入;最后利用最近邻分类器分别实现正负类样本以及负负类样本之间的识别。实验表明,该算法不仅提高了正负类叶片的识别精度,而且能够有效实现负负类叶片的识别。展开更多
文摘针对加权局部线性嵌入(Weighted Locally Linear Embedding,WLLE)算法不能充分挖掘样本类别信息以及传统流形学习算法中利用已有训练样本流形邻域关系近似得到测试样本低维嵌入的低精确性,提出了基于监督加权局部线性嵌入(Supervised Weighted Locally Linear Embedding,S-WLLE)算法和支持向量机回归(Support Vector Regression,SVR)的植物叶片图像识别方法。首先利用叶片样本监督距离代替WLLE算法中的欧式距离,对训练样本进行降维;然后学习训练样本已有数据得到SVR模型,预测测试样本的低维嵌入;最后利用最近邻分类器分别实现正负类样本以及负负类样本之间的识别。实验表明,该算法不仅提高了正负类叶片的识别精度,而且能够有效实现负负类叶片的识别。