The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
<span style="line-height:1.5;font-family:Verdana;">This research aims to obtain useful information for development of medical devices such as wound dressing and tissue anti-adhesive product, using a sp...<span style="line-height:1.5;font-family:Verdana;">This research aims to obtain useful information for development of medical devices such as wound dressing and tissue anti-adhesive product, using a spongy sheet composed of hyaluronic acid (HA) and collagen (Col). The spongy sheets were manufactured by freeze vacuum drying of HA and Col aqueous solution, followed by UV irradiation to introduce intermolecular crosslinks between Col molecules. These spongy sheets are referred to as Sponge-A (ratio of HA/Col = 5/1) and Sponge-B (ratio of HA/Col = 5/5). Both surfaces of Sponge-A and Sponge-B treated with UV irradiation for 15 minutes are referred to as Sponge-A-15 and Sponge-B-15, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of sponge-A-15 collected 1/2, 1, 3, 7 days after immersion in water was 63.5%, 62.1%, 56.6%, 54.4% of the original weight, respectively. The weight of Sponge-B-15 was 78.3%, 76.7%, 79.1%, 71.9% of the original weight, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water containing collagenase at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of Sponge-A-15 collected 6, 8, 10, 12 hours after immersion in water containing collagenase (0.0005</span><span "="" style="line-height:1.5;"> </span><span style="line-height:1.5;font-family:Verdana;">w/v%) was 65.7%, 59.8%, 57.9%, 55.2% of the original weight, respectively. The weight of Sponge-B-15 was 63.5%, 52.1%, 42.0%, 43.2% of the original weight, respectively. This spongy sheet is considered to have the unique structure, where HA molecules are entrapped in an intermolecular cross-linked network structure of Col molecules. When immersed in water containing collagenase, the weight loss of spongy sheet is accelerated by easy extraction of HA molecules from the enzymatic degraded Col network structure. The performance of wound dressing and tissue anti-adhesive product is considered to depend on appropriate ratio of HA and Col, and also on appropriate rate of intermolecular crosslinks between Col molecules. These findings obtained in this study provide useful information for product development such as wound dressing and tissue anti-adhesive product.展开更多
The surface force apparatus (SFA) plays a key role in research of nano-technology. A new SFA is introduced. With this apparatus, the theories about non-adhesion and adhesion contact were studied. The experiments showe...The surface force apparatus (SFA) plays a key role in research of nano-technology. A new SFA is introduced. With this apparatus, the theories about non-adhesion and adhesion contact were studied. The experiments showed the agreement between Hertz and non-adhesion contact. The JKR theory approximately accords with the experiment.展开更多
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.
文摘<span style="line-height:1.5;font-family:Verdana;">This research aims to obtain useful information for development of medical devices such as wound dressing and tissue anti-adhesive product, using a spongy sheet composed of hyaluronic acid (HA) and collagen (Col). The spongy sheets were manufactured by freeze vacuum drying of HA and Col aqueous solution, followed by UV irradiation to introduce intermolecular crosslinks between Col molecules. These spongy sheets are referred to as Sponge-A (ratio of HA/Col = 5/1) and Sponge-B (ratio of HA/Col = 5/5). Both surfaces of Sponge-A and Sponge-B treated with UV irradiation for 15 minutes are referred to as Sponge-A-15 and Sponge-B-15, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of sponge-A-15 collected 1/2, 1, 3, 7 days after immersion in water was 63.5%, 62.1%, 56.6%, 54.4% of the original weight, respectively. The weight of Sponge-B-15 was 78.3%, 76.7%, 79.1%, 71.9% of the original weight, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water containing collagenase at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of Sponge-A-15 collected 6, 8, 10, 12 hours after immersion in water containing collagenase (0.0005</span><span "="" style="line-height:1.5;"> </span><span style="line-height:1.5;font-family:Verdana;">w/v%) was 65.7%, 59.8%, 57.9%, 55.2% of the original weight, respectively. The weight of Sponge-B-15 was 63.5%, 52.1%, 42.0%, 43.2% of the original weight, respectively. This spongy sheet is considered to have the unique structure, where HA molecules are entrapped in an intermolecular cross-linked network structure of Col molecules. When immersed in water containing collagenase, the weight loss of spongy sheet is accelerated by easy extraction of HA molecules from the enzymatic degraded Col network structure. The performance of wound dressing and tissue anti-adhesive product is considered to depend on appropriate ratio of HA and Col, and also on appropriate rate of intermolecular crosslinks between Col molecules. These findings obtained in this study provide useful information for product development such as wound dressing and tissue anti-adhesive product.
文摘The surface force apparatus (SFA) plays a key role in research of nano-technology. A new SFA is introduced. With this apparatus, the theories about non-adhesion and adhesion contact were studied. The experiments showed the agreement between Hertz and non-adhesion contact. The JKR theory approximately accords with the experiment.