We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are succ...We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are success- fully obtained. The measurement of temperature dependence of electricaJ resistivity p(T) in both normal and superconducting states indicates a quasi-two-dimensional electronic state in contrast to that of polycrystalline samples. Specific heat C(T) measurement reveals a bulk superconductivity with Tc ≈ 3.75K and a specific heat jump ratio of 1.42. All these results are in agreement with a moderately electron-phonon coupled, type-g Bardeen-Cooper-Schrieffer superconductor.展开更多
Topological semimetals are a new type of matter with one-dimensional Fermi lines or zero-dimensional Weyl or Dirac points in momentum space. Here using first-principles calculations, we find that the non-centrosymmetr...Topological semimetals are a new type of matter with one-dimensional Fermi lines or zero-dimensional Weyl or Dirac points in momentum space. Here using first-principles calculations, we find that the non-centrosymmetric PbTaS2 is a topological nodal line semimetal. In the absence of spin-orbit coupling (SOC), one band inversion happens around a high symmetrical H point, which leads to forming a nodal line. The nodal line is robust and protected against gap opening by mirror reflection symmetry even with the inclusion of strong SOC. In addition, it also hosts exotic drumhead surface states either inside or outside the projected nodal ring depending on surface termination. The robust bulk nodal lines and drumhead-like surface states with SOC in PbTaS2 make it a potential candidate material for exploring the freakish properties of the topological nodal line fermions in condensed matter systems.展开更多
The alloys of non-centrosymmetric superconductor, Re3W, which were reported to have an ^-Mn structure [P. Greenfield and P. A. Beck, J. Metals, N. Y. 8, 265 (1959)] with Tc = 9K, are prepared by arc melting. The val...The alloys of non-centrosymmetric superconductor, Re3W, which were reported to have an ^-Mn structure [P. Greenfield and P. A. Beck, J. Metals, N. Y. 8, 265 (1959)] with Tc = 9K, are prepared by arc melting. The values of ac susceptibility and the low-temperature specific heat of these alloys are measured. It is found that there are two superconducting phases coexisting in the samples with Tc1 ≈ 9 K and Tc2 ≈ 7K, which are both non-centrosymmetric in structure as reported previously. By analysing the specific heat data measured in various magnetic fields down to a temperature of 1.8 K, we find that the absence of the inversion symmetry does not lead to an obvious deviation from an s-wave pairing symmetry in Re3W.展开更多
We report the surface electronic structure of niobium phosphide NbP single crystal on (001) surface by vacuum ultraviolet angle-resolved photoemission spectroscopy. Combining with our first principle calculations, w...We report the surface electronic structure of niobium phosphide NbP single crystal on (001) surface by vacuum ultraviolet angle-resolved photoemission spectroscopy. Combining with our first principle calculations, we identify the existence of the Fermi arcs originated from topological surface states. Furthermore, the surface states exhibit circular dichroism pattern, which may correlate with its non-trivial spin texture. Our results provide critical evidence for the existence of the Weyl Fermions in NbP, which lays the foundation for further research.展开更多
The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction,named as gate-controlled supercurrent(GCS),has raised great interest for fundamental an...The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction,named as gate-controlled supercurrent(GCS),has raised great interest for fundamental and technological reasons.To gain a deeper understanding of this effect and develop superconducting technologies based on it,the material and physical parameters crucial for the GCS effect must be identified.Top-down fabrication protocols should also be optimized to increase device scalability,although studies suggest that top-down fabricated devices are more resilient to show a GCS.Here,we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of the noncentrosymmetric superconductor niobium rhenium with varying ratios of the constituents(NbRe).Unlike other devices previously reported and made with a top-down approach,our NbRe devices systematically exhibit a GCS effect when they were fabricated from NbRe thin films with small grain size and etched in specific conditions.These observations pave the way for the realization of top-down-made GCS devices with high scalability.Our results also imply that physical parameters like structural disorder and surface physical properties of the nanobridges,which can be in turn modified by the fabrication process,are crucial for a GCS observation,providing therefore also important insights into the physics underlying the GCS effect.展开更多
Non-centrosymmetric(NCS)structure is an indispensable prerequisite for second-order nonlinear optical(NLO)material.Currently,the mainstream approach for designing new NCS structures still relies on chemical substituti...Non-centrosymmetric(NCS)structure is an indispensable prerequisite for second-order nonlinear optical(NLO)material.Currently,the mainstream approach for designing new NCS structures still relies on chemical substitution,necessitating an urgent infusion of fresh ideas.In this work,two isomorphic sulfides AeMn_(6)Ga_(6)S_(16)(Ae=Ca,1;Sr,2)are afforded by modifying the skeleton of centrosymmetric(CS)Mn_(2)Ga_(2)S_(5) via introducing strong electropositive alkaline-earth cations.Concretely,the incorporation of Ca^(2+)/Sr^(2+)cations allows the elementary[MnGaS_(9)]_(∞)chains to reconfigure into bumpy[MnS_(6)]-[GaS_(4)]layers in a new engagement manner,thus enabling the conversion from CS to NCS structure.Such modifications cause not only strong second-harmonic generation(SHG)responses(~1.5×benchmark AgGaS_(2)@1,700 nm),but also significantly feasible bandgaps(2.60-2.64 e V)compared to the sulfide Mn_(2)Ga_(2)S_(5)(1.36 e V),which ultimately facilitate ultrahigh laser-induced damage thresholds(4.4-6.6×AgGaS_(2)@1,064 nm for compounds 1 and 2).The present study offers an ingenious approach for the transformation of CS to NCS structure.展开更多
The crystal structure of a new non-centrosymmetric microporous fluorinated iron phosphate, (H30)2[Fe4(H2O)2F4(PO4)2(HPO4)2](H2O), was determined by single crystal X-ray diffraction analysis and the result re...The crystal structure of a new non-centrosymmetric microporous fluorinated iron phosphate, (H30)2[Fe4(H2O)2F4(PO4)2(HPO4)2](H2O), was determined by single crystal X-ray diffraction analysis and the result reveals that it belongs to the orthorhombic system with four molecules in the unit cell(space group P212121). Thus, the complex was characterized by powder X-ray diffraction, spectroscopic techniques(Fourier transform infrared and Fourier transform Raman) and 19F MAS NMR. The elemental analysis of the sample was also carried out. The chiral inorganic sheets, which stacked along [100] showed the presence of FeF2O4 as well as FeF2O3H2O octahedra, PO4 besides HPO4 tetrahedra, hydronium ions(H3O+) and isolated water molecules. Hirshfeld surface analysis, especially dnom surface and fingerprint plots, were used for decoding the intermolecular interactions in the crystal network and the contribution of component units for the construction of the 3D architecture. From the Hirshfeld surfaces and 2D fingerprint analysis, it was found that the subtle interactions, such as H...H associating the third intense interaction of all intercontacts, provide extra stabilization in addition to the presence of the strong hydrogen bonds mentioned above.展开更多
Two new quaternary sulfides,La3Sn0.25GeS71 and Sm3 Sn0.25GeS72,have been synthesized by a facile solid-state reaction,and their crystal structures were determined by singlecrystal X-ray diffraction analysis.The two co...Two new quaternary sulfides,La3Sn0.25GeS71 and Sm3 Sn0.25GeS72,have been synthesized by a facile solid-state reaction,and their crystal structures were determined by singlecrystal X-ray diffraction analysis.The two compounds crystallize in the P6 3 space group,and the crystal data are as follows-La3Sn0.25GeS7:a=10.3335(7),c=5.8455(7),Z=2;Sm3Sn0.25GeS7:a=9.999(3),c=5.787(2),Z=2.Single-crystal analysis indicated that the two compounds consist of three types of building blocks:LnS 8 anti-tetragonal prism,SnS 6 octahedron,and GeS 4 tetrahedron.展开更多
We have synthesized single crystals of CeZnAl3, which is a new member of family of Ce-based intermetallics CeTX3 (T=transition metal, X=Si, Ge, A1), crystallizing in the non-centrosymmetric tetragonal BaNiSns-type s...We have synthesized single crystals of CeZnAl3, which is a new member of family of Ce-based intermetallics CeTX3 (T=transition metal, X=Si, Ge, A1), crystallizing in the non-centrosymmetric tetragonal BaNiSns-type structure. Magnetization, specific heat and resistivity measurements all show that CeZnAls orders magnetically below around 4.4 K. Furthermore, magnetization measurements exhibit a hysteresis loop at low temperatures and fields, indicating the presence of a ferromagnetic component in the magnetic state. This points to a different nature of the magnetism in CeZnAl3 compared to the other isostructural CeTAl3 compounds. Resistivity measurements under pressures up to 1.8 GPa show a moderate suppression of the ordering temperature with pressure, suggesting that measurements to higher pressures are required to look for quantum critical behavior.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921303,2011CBA00100 and 2012CB821404the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant Nos XDB07020100and XDB07020200the National Natural Science Foundation of China under Grant No 11174350
文摘We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are success- fully obtained. The measurement of temperature dependence of electricaJ resistivity p(T) in both normal and superconducting states indicates a quasi-two-dimensional electronic state in contrast to that of polycrystalline samples. Specific heat C(T) measurement reveals a bulk superconductivity with Tc ≈ 3.75K and a specific heat jump ratio of 1.42. All these results are in agreement with a moderately electron-phonon coupled, type-g Bardeen-Cooper-Schrieffer superconductor.
基金Supported by the National Natural Science Foundation of China under Grant No 11504366the National Basic Research Program of China under Grant Nos 2015CB921503 and 2016YFE0110000
文摘Topological semimetals are a new type of matter with one-dimensional Fermi lines or zero-dimensional Weyl or Dirac points in momentum space. Here using first-principles calculations, we find that the non-centrosymmetric PbTaS2 is a topological nodal line semimetal. In the absence of spin-orbit coupling (SOC), one band inversion happens around a high symmetrical H point, which leads to forming a nodal line. The nodal line is robust and protected against gap opening by mirror reflection symmetry even with the inclusion of strong SOC. In addition, it also hosts exotic drumhead surface states either inside or outside the projected nodal ring depending on surface termination. The robust bulk nodal lines and drumhead-like surface states with SOC in PbTaS2 make it a potential candidate material for exploring the freakish properties of the topological nodal line fermions in condensed matter systems.
基金supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (Grant Nos 2006CB601000, 2006CB921802 and 2006CB921300)the Knowledge Innovation Program of the Chinese Academy of Sciences (ITSNEM)
文摘The alloys of non-centrosymmetric superconductor, Re3W, which were reported to have an ^-Mn structure [P. Greenfield and P. A. Beck, J. Metals, N. Y. 8, 265 (1959)] with Tc = 9K, are prepared by arc melting. The values of ac susceptibility and the low-temperature specific heat of these alloys are measured. It is found that there are two superconducting phases coexisting in the samples with Tc1 ≈ 9 K and Tc2 ≈ 7K, which are both non-centrosymmetric in structure as reported previously. By analysing the specific heat data measured in various magnetic fields down to a temperature of 1.8 K, we find that the absence of the inversion symmetry does not lead to an obvious deviation from an s-wave pairing symmetry in Re3W.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174124,11274068,11374137,11421404 and 13ZR1451700the National Basic Research Program of China(973 Program)under Grant No 2012CB921402
文摘We report the surface electronic structure of niobium phosphide NbP single crystal on (001) surface by vacuum ultraviolet angle-resolved photoemission spectroscopy. Combining with our first principle calculations, we identify the existence of the Fermi arcs originated from topological surface states. Furthermore, the surface states exhibit circular dichroism pattern, which may correlate with its non-trivial spin texture. Our results provide critical evidence for the existence of the Weyl Fermions in NbP, which lays the foundation for further research.
基金the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No.964398(SuperGate)the US ONR(Nos.N00014-21-1-2879,N00014-20-1-2442,and N00014-23-1-2866).
文摘The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction,named as gate-controlled supercurrent(GCS),has raised great interest for fundamental and technological reasons.To gain a deeper understanding of this effect and develop superconducting technologies based on it,the material and physical parameters crucial for the GCS effect must be identified.Top-down fabrication protocols should also be optimized to increase device scalability,although studies suggest that top-down fabricated devices are more resilient to show a GCS.Here,we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of the noncentrosymmetric superconductor niobium rhenium with varying ratios of the constituents(NbRe).Unlike other devices previously reported and made with a top-down approach,our NbRe devices systematically exhibit a GCS effect when they were fabricated from NbRe thin films with small grain size and etched in specific conditions.These observations pave the way for the realization of top-down-made GCS devices with high scalability.Our results also imply that physical parameters like structural disorder and surface physical properties of the nanobridges,which can be in turn modified by the fabrication process,are crucial for a GCS observation,providing therefore also important insights into the physics underlying the GCS effect.
基金supported by the National Natural Science Foundation of China(21827813,21921001,22175172,22075283,92161125,U21A20508)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020303,2021300)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2020ZZ108)。
文摘Non-centrosymmetric(NCS)structure is an indispensable prerequisite for second-order nonlinear optical(NLO)material.Currently,the mainstream approach for designing new NCS structures still relies on chemical substitution,necessitating an urgent infusion of fresh ideas.In this work,two isomorphic sulfides AeMn_(6)Ga_(6)S_(16)(Ae=Ca,1;Sr,2)are afforded by modifying the skeleton of centrosymmetric(CS)Mn_(2)Ga_(2)S_(5) via introducing strong electropositive alkaline-earth cations.Concretely,the incorporation of Ca^(2+)/Sr^(2+)cations allows the elementary[MnGaS_(9)]_(∞)chains to reconfigure into bumpy[MnS_(6)]-[GaS_(4)]layers in a new engagement manner,thus enabling the conversion from CS to NCS structure.Such modifications cause not only strong second-harmonic generation(SHG)responses(~1.5×benchmark AgGaS_(2)@1,700 nm),but also significantly feasible bandgaps(2.60-2.64 e V)compared to the sulfide Mn_(2)Ga_(2)S_(5)(1.36 e V),which ultimately facilitate ultrahigh laser-induced damage thresholds(4.4-6.6×AgGaS_(2)@1,064 nm for compounds 1 and 2).The present study offers an ingenious approach for the transformation of CS to NCS structure.
文摘The crystal structure of a new non-centrosymmetric microporous fluorinated iron phosphate, (H30)2[Fe4(H2O)2F4(PO4)2(HPO4)2](H2O), was determined by single crystal X-ray diffraction analysis and the result reveals that it belongs to the orthorhombic system with four molecules in the unit cell(space group P212121). Thus, the complex was characterized by powder X-ray diffraction, spectroscopic techniques(Fourier transform infrared and Fourier transform Raman) and 19F MAS NMR. The elemental analysis of the sample was also carried out. The chiral inorganic sheets, which stacked along [100] showed the presence of FeF2O4 as well as FeF2O3H2O octahedra, PO4 besides HPO4 tetrahedra, hydronium ions(H3O+) and isolated water molecules. Hirshfeld surface analysis, especially dnom surface and fingerprint plots, were used for decoding the intermolecular interactions in the crystal network and the contribution of component units for the construction of the 3D architecture. From the Hirshfeld surfaces and 2D fingerprint analysis, it was found that the subtle interactions, such as H...H associating the third intense interaction of all intercontacts, provide extra stabilization in addition to the presence of the strong hydrogen bonds mentioned above.
基金Supported by the NNSF of China (20821061)Key Project from the CAS (KJCX2-YW-M10,KJCX2-EW-H03)the 973 Program (2009CB939801)
文摘Two new quaternary sulfides,La3Sn0.25GeS71 and Sm3 Sn0.25GeS72,have been synthesized by a facile solid-state reaction,and their crystal structures were determined by singlecrystal X-ray diffraction analysis.The two compounds crystallize in the P6 3 space group,and the crystal data are as follows-La3Sn0.25GeS7:a=10.3335(7),c=5.8455(7),Z=2;Sm3Sn0.25GeS7:a=9.999(3),c=5.787(2),Z=2.Single-crystal analysis indicated that the two compounds consist of three types of building blocks:LnS 8 anti-tetragonal prism,SnS 6 octahedron,and GeS 4 tetrahedron.
基金supported by the Science Challenge Project of China(Grant No.TZ2016004)the National Natural Science Foundation of China(Grant Nos.11474251,11604291,and U1632275)the National Key R&D Program of China(Grant Nos.2017YFA0303100,and 2016YFA0300202)
文摘We have synthesized single crystals of CeZnAl3, which is a new member of family of Ce-based intermetallics CeTX3 (T=transition metal, X=Si, Ge, A1), crystallizing in the non-centrosymmetric tetragonal BaNiSns-type structure. Magnetization, specific heat and resistivity measurements all show that CeZnAls orders magnetically below around 4.4 K. Furthermore, magnetization measurements exhibit a hysteresis loop at low temperatures and fields, indicating the presence of a ferromagnetic component in the magnetic state. This points to a different nature of the magnetism in CeZnAl3 compared to the other isostructural CeTAl3 compounds. Resistivity measurements under pressures up to 1.8 GPa show a moderate suppression of the ordering temperature with pressure, suggesting that measurements to higher pressures are required to look for quantum critical behavior.