Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on ...Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on a non-convex plate during unsteady motion. We perform the experiment in a water tank during free fall. We fabricate the non-convex plate by cutting isosceles triangles from the side of a convex hexagonal plate. The base angle of the triangle is between 0° to 45°. The base angle is 0 indicates the convex hexagonal thin plate. We estimate the drag coefficient with the force balance acting on the model based on the image analysis technique. The results indicate that increasing the base angle by more than 30° increased the drag coefficient. The drag coefficient during unsteady motion changed with the growth of the vortex behind the model. The vortex has small vortices in the shear layer, which is related to the Kelvin-Helmholtz instabilities.展开更多
A problem of the plane elasticity theory is addressed for a doubly connected body with an external boundary of the regular hexagon shape and with a 6-fold symmetric hole at the center. It is assumed that all the six s...A problem of the plane elasticity theory is addressed for a doubly connected body with an external boundary of the regular hexagon shape and with a 6-fold symmetric hole at the center. It is assumed that all the six sides of the hexagon are subjected to uniform normal displacements via smooth rigid stamps, while the uniformly distributed normal stress is applied to the internal hole boundary. Using the methods of complex analysis, the analytical image of Kolosov-Muskhelishvili's complex potentials and the shape of the hole contour are determined from the condition that the circumferential normal stress is constant along the hole contour. Numerical results are given and shown in relevant graphs.展开更多
文摘Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on a non-convex plate during unsteady motion. We perform the experiment in a water tank during free fall. We fabricate the non-convex plate by cutting isosceles triangles from the side of a convex hexagonal plate. The base angle of the triangle is between 0° to 45°. The base angle is 0 indicates the convex hexagonal thin plate. We estimate the drag coefficient with the force balance acting on the model based on the image analysis technique. The results indicate that increasing the base angle by more than 30° increased the drag coefficient. The drag coefficient during unsteady motion changed with the growth of the vortex behind the model. The vortex has small vortices in the shear layer, which is related to the Kelvin-Helmholtz instabilities.
文摘A problem of the plane elasticity theory is addressed for a doubly connected body with an external boundary of the regular hexagon shape and with a 6-fold symmetric hole at the center. It is assumed that all the six sides of the hexagon are subjected to uniform normal displacements via smooth rigid stamps, while the uniformly distributed normal stress is applied to the internal hole boundary. Using the methods of complex analysis, the analytical image of Kolosov-Muskhelishvili's complex potentials and the shape of the hole contour are determined from the condition that the circumferential normal stress is constant along the hole contour. Numerical results are given and shown in relevant graphs.