In this paper, we study the supervisory control problem of discrete event systems assuming that cyber-attacks might occur. In particular, we focus on the problem of liveness enforcement and consider a sensor-reading m...In this paper, we study the supervisory control problem of discrete event systems assuming that cyber-attacks might occur. In particular, we focus on the problem of liveness enforcement and consider a sensor-reading modification attack(SM-attack) that may disguise the occurrence of an event as that of another event by intruding sensor communication channels. To solve the problem, we introduce non-deterministic supervisors in the paper, which associate to every observed sequence a set of possible control actions offline and choose a control action from the set randomly online to control the system. Specifically, given a bounded Petri net(PN) as the reference formalism and an SMattack, an algorithm that synthesizes a liveness-enforcing nondeterministic supervisor tolerant to the SM-attack is proposed for the first time.展开更多
The supervisory control problem for discrete event system(DES) under control involves identifying the supervisor, if one exists, which, when synchronously composed with the DES,results in a system that conforms to the...The supervisory control problem for discrete event system(DES) under control involves identifying the supervisor, if one exists, which, when synchronously composed with the DES,results in a system that conforms to the control specification. In this context, we consider a non-deterministic DES under complete observation and control specification expressed in action-based propositional μ-calculus. The key to our solution is the process of quotienting the control specification against the plan resulting in a new μ-calculus formula such that a model for the formula is the supervisor. Thus the task of control synthesis is reduced a problem of μ-calculus satisfiability. In contrast to the existing μ-calculus quotienting-based techniques that are developed in deterministic setting, our quotienting rules can handle nondeterminism in the plant models. Another distinguishing feature of our technique is that while existing techniques use a separate μ-calculus formula to describe the controllability constraint(that uncontrollable events of plants are never disabled by a supervisor), we absorb this constraint as part of quotienting which allows us to directly capture more general state-dependent controllability constraints. Finally, we develop a tableau-based technique for verifying satisfiability of quotiented formula and model generation. The runtime for the technique is exponential in terms of the size of the plan and the control specification. A better complexity result that is polynomial to plant size and exponential to specification size is obtained when the controllability property is state-independent. A prototype implementation in a tabled logic programming language as well as some experimental results are presented.展开更多
The spectrum allocation for cognitive radio networks(CRNs) has received considerable studies under the assumption that the bandwidth of spectrum holes is static. However, in practice, the bandwidth of spectrum holes i...The spectrum allocation for cognitive radio networks(CRNs) has received considerable studies under the assumption that the bandwidth of spectrum holes is static. However, in practice, the bandwidth of spectrum holes is time-varied due to primary user/secondary user(PU/SU) activity and mobility, which result in non-determinacy. This paper studies the spectrum allocation for CRNs with non-deterministic bandwidth of spectrum holes. We present a novel probability density function(PDF) through order statistics as well as its simplified form to describe the statistical properties of spectrum holes, with which a statistical spectrum allocation model based on stochastic multiple knapsack problem(MKP) is formulated for spectrum allocation with non-deterministic bandwidth of spectrum holes. To reduce the computational complexity, we transform this stochastic programming problem into a constant MKP through exploiting the properties of cumulative distribution function(CDF), which can be solved via MTHG algorithm by using auxiliary variables. Simulation results illustrate that the proposed statistical spectrum allocation algorithm can achieve better performance compared with the existing algorithms when the bandwidth of spectrum holes is time-varied.展开更多
Watson Crick automata are finite automata working on double strands. Extensive research work has already been done on non deterministic Watson Crick automata and on deterministic Watson Crick automata. Parallel Commun...Watson Crick automata are finite automata working on double strands. Extensive research work has already been done on non deterministic Watson Crick automata and on deterministic Watson Crick automata. Parallel Communicating Watson Crick automata systems have been introduced by E. Czeziler et al. In this paper we discuss about a variant of Watson Crick automata known as the two-way Watson Crick automata which are more powerful than non-deterministic Watson Crick automata. We also establish the equivalence of different subclasses of two-way Watson crick automata. We further show that recursively enumerable (RE) languages can be realized by an image of generalized sequential machine (gsm) mapping of two-way Watson-Crick automata.展开更多
Modeling and forecasting of the groundwater water table are a major component of effective planning and management of water resources. One way to predict the groundwater level is analysis using a non-deterministic mod...Modeling and forecasting of the groundwater water table are a major component of effective planning and management of water resources. One way to predict the groundwater level is analysis using a non-deterministic model. This study assessed the performance of such models in predicting the groundwater level at Kashan aquifer. Data from 36 piezometer wells in Kashan aquifer for 1999 to 2010 were used. The desired statistical interval was divided into two parts and statistics for 1990 to 2004 were used for modeling and statistics from 2005 to 2010 were used for valediction of the model. The Akaike criterion and correlation coefficients were used to determine the accuracy of the prediction models. The results indicated that the AR(2) model more accurately predicted ground water level in the plains;using this model, the groundwater water table was predicted for up to 60 mo.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel...In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves...Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.展开更多
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred...With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.展开更多
With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater envir...With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.展开更多
The recently experienced hype concerning the so-called “4<sup>th</sup> Industrial Revolution” of production systems has prompted several papers of various subtopics regarding Cyber-Phdysical Production S...The recently experienced hype concerning the so-called “4<sup>th</sup> Industrial Revolution” of production systems has prompted several papers of various subtopics regarding Cyber-Phdysical Production Systems (CPPS). However, important aspects such as the modelling of CPPS to understand the theory regarding the performance of highly non-ergodic and non-deterministic flexible manufacturing systems in terms of Exit Rate (ER), Manufacturing Lead Time (MLT), and On-Time Delivery (OTD) have not yet been examined systematically and even less modeled analytically. To develop the topic, in this paper, the prerequisites for modelling such systems are defined in order to be able to derive an explicit and dedicated production mathematics-based understanding of CPPS and its dynamics: switching from explorative simulation to rational modelling of the manufacturing “physics” led to an own and specific manufacturing theory. The findings have led to enouncing, among others, the Theorem of Non-Ergodicity as well as the Batch Cycle Time Deviation Function giving important insights to model digital twin-based CPPS for complying with the mandatory OTD.展开更多
In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct pi...In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.展开更多
Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a s...Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.展开更多
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro...The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.展开更多
Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equa...Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equation x2+y2=n). Starting from a quadratic form with two variables f(x,y)=ax2+bxy+cy2and n an integer. We have shown that a primitive positive solution (u,v)of the equation f(x,y)=nis admissible if it is obtained in the following way: we take α modulo n such that f(α,1)≡0modn, u is the first of the remainders of Euclid’s algorithm associated with n and α that is less than 4cn/| D |) (possibly α itself) and the equation f(x,y)=n. has an integer solution u in y. At the end of our work, it also appears that the Cornacchia algorithm is good for the form n=ax2+bxy+cy2if all the primitive positive integer solutions of the equation f(x,y)=nare admissible, i.e. computable by the algorithmic process.展开更多
基金supported in part by the Public Technology Research Plan of Zhejiang Province (LGJ21F030001)the National Natural Science Foundation of China (62302448)the Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (2013E10012)。
文摘In this paper, we study the supervisory control problem of discrete event systems assuming that cyber-attacks might occur. In particular, we focus on the problem of liveness enforcement and consider a sensor-reading modification attack(SM-attack) that may disguise the occurrence of an event as that of another event by intruding sensor communication channels. To solve the problem, we introduce non-deterministic supervisors in the paper, which associate to every observed sequence a set of possible control actions offline and choose a control action from the set randomly online to control the system. Specifically, given a bounded Petri net(PN) as the reference formalism and an SMattack, an algorithm that synthesizes a liveness-enforcing nondeterministic supervisor tolerant to the SM-attack is proposed for the first time.
基金supported in part by the National Sci-ence Foundation (NSF-ECCS-1509420, NSF-CSSI-2004766)。
文摘The supervisory control problem for discrete event system(DES) under control involves identifying the supervisor, if one exists, which, when synchronously composed with the DES,results in a system that conforms to the control specification. In this context, we consider a non-deterministic DES under complete observation and control specification expressed in action-based propositional μ-calculus. The key to our solution is the process of quotienting the control specification against the plan resulting in a new μ-calculus formula such that a model for the formula is the supervisor. Thus the task of control synthesis is reduced a problem of μ-calculus satisfiability. In contrast to the existing μ-calculus quotienting-based techniques that are developed in deterministic setting, our quotienting rules can handle nondeterminism in the plant models. Another distinguishing feature of our technique is that while existing techniques use a separate μ-calculus formula to describe the controllability constraint(that uncontrollable events of plants are never disabled by a supervisor), we absorb this constraint as part of quotienting which allows us to directly capture more general state-dependent controllability constraints. Finally, we develop a tableau-based technique for verifying satisfiability of quotiented formula and model generation. The runtime for the technique is exponential in terms of the size of the plan and the control specification. A better complexity result that is polynomial to plant size and exponential to specification size is obtained when the controllability property is state-independent. A prototype implementation in a tabled logic programming language as well as some experimental results are presented.
基金supported by the National Natural Science Foundation of China (No.61501065, 91438104,No.61571069 and No.61601067)the Fundamental Research Funds for the Central Universities (No.106112015CDJXY160002,No.106112016CDJXY160001)the Chongqing Research Program of Basic Research and Frontier Technology (No.CSTC2016JCYJA0021)
文摘The spectrum allocation for cognitive radio networks(CRNs) has received considerable studies under the assumption that the bandwidth of spectrum holes is static. However, in practice, the bandwidth of spectrum holes is time-varied due to primary user/secondary user(PU/SU) activity and mobility, which result in non-determinacy. This paper studies the spectrum allocation for CRNs with non-deterministic bandwidth of spectrum holes. We present a novel probability density function(PDF) through order statistics as well as its simplified form to describe the statistical properties of spectrum holes, with which a statistical spectrum allocation model based on stochastic multiple knapsack problem(MKP) is formulated for spectrum allocation with non-deterministic bandwidth of spectrum holes. To reduce the computational complexity, we transform this stochastic programming problem into a constant MKP through exploiting the properties of cumulative distribution function(CDF), which can be solved via MTHG algorithm by using auxiliary variables. Simulation results illustrate that the proposed statistical spectrum allocation algorithm can achieve better performance compared with the existing algorithms when the bandwidth of spectrum holes is time-varied.
文摘Watson Crick automata are finite automata working on double strands. Extensive research work has already been done on non deterministic Watson Crick automata and on deterministic Watson Crick automata. Parallel Communicating Watson Crick automata systems have been introduced by E. Czeziler et al. In this paper we discuss about a variant of Watson Crick automata known as the two-way Watson Crick automata which are more powerful than non-deterministic Watson Crick automata. We also establish the equivalence of different subclasses of two-way Watson crick automata. We further show that recursively enumerable (RE) languages can be realized by an image of generalized sequential machine (gsm) mapping of two-way Watson-Crick automata.
文摘Modeling and forecasting of the groundwater water table are a major component of effective planning and management of water resources. One way to predict the groundwater level is analysis using a non-deterministic model. This study assessed the performance of such models in predicting the groundwater level at Kashan aquifer. Data from 36 piezometer wells in Kashan aquifer for 1999 to 2010 were used. The desired statistical interval was divided into two parts and statistics for 1990 to 2004 were used for modeling and statistics from 2005 to 2010 were used for valediction of the model. The Akaike criterion and correlation coefficients were used to determine the accuracy of the prediction models. The results indicated that the AR(2) model more accurately predicted ground water level in the plains;using this model, the groundwater water table was predicted for up to 60 mo.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.
基金supported in part by the Natural Science Youth Foundation of Hebei Province under Grant F2019403207in part by the PhD Research Startup Foundation of Hebei GEO University under Grant BQ2019055+3 种基金in part by the Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP-2021A06in part by the Fundamental Research Funds for the Universities in Hebei Province under Grant QN202220in part by the Science and Technology Research Project for Universities of Hebei under Grant ZD2020344in part by the Guangxi Natural Science Fund General Project under Grant 2021GXNSFAA075029.
文摘In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金support from the National Science Foundation of China(Grant Nos.62075078 and 62135004)the Knowledge Innovation Program of Wuhan-Shuguang Project(Grant No.2022010801020095).
文摘Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.
基金supported by the National Science and Technology Innovation 2030 Next-Generation Artifical Intelligence Major Project(2018AAA0101801)the National Natural Science Foundation of China(72271188)。
文摘With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.
基金supported by Research Program supported by the National Natural Science Foundation of China(No.62201249)the Jiangsu Agricultural Science and Technology Innovation Fund(No.CX(21)1007)+2 种基金the Open Project of the Zhejiang Provincial Key Laboratory of Crop Harvesting Equipment and Technology(Nos.2021KY03,2021KY04)University-Industry Collaborative Education Program(No.201801166003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_1042).
文摘With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.
文摘The recently experienced hype concerning the so-called “4<sup>th</sup> Industrial Revolution” of production systems has prompted several papers of various subtopics regarding Cyber-Phdysical Production Systems (CPPS). However, important aspects such as the modelling of CPPS to understand the theory regarding the performance of highly non-ergodic and non-deterministic flexible manufacturing systems in terms of Exit Rate (ER), Manufacturing Lead Time (MLT), and On-Time Delivery (OTD) have not yet been examined systematically and even less modeled analytically. To develop the topic, in this paper, the prerequisites for modelling such systems are defined in order to be able to derive an explicit and dedicated production mathematics-based understanding of CPPS and its dynamics: switching from explorative simulation to rational modelling of the manufacturing “physics” led to an own and specific manufacturing theory. The findings have led to enouncing, among others, the Theorem of Non-Ergodicity as well as the Batch Cycle Time Deviation Function giving important insights to model digital twin-based CPPS for complying with the mandatory OTD.
基金the Japan Society for the Promotion of Science,KAKENHI Grant Nos.20H04199 and 23H00475.
文摘In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.
文摘Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.
文摘The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.
文摘Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equation x2+y2=n). Starting from a quadratic form with two variables f(x,y)=ax2+bxy+cy2and n an integer. We have shown that a primitive positive solution (u,v)of the equation f(x,y)=nis admissible if it is obtained in the following way: we take α modulo n such that f(α,1)≡0modn, u is the first of the remainders of Euclid’s algorithm associated with n and α that is less than 4cn/| D |) (possibly α itself) and the equation f(x,y)=n. has an integer solution u in y. At the end of our work, it also appears that the Cornacchia algorithm is good for the form n=ax2+bxy+cy2if all the primitive positive integer solutions of the equation f(x,y)=nare admissible, i.e. computable by the algorithmic process.