期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
1
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:27
2
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
下载PDF
Non-dominated sorting quantum particle swarm optimization and its application in cognitive radio spectrum allocation 被引量:4
3
作者 GAO Hong-yuan CAO Jin-long 《Journal of Central South University》 SCIE EI CAS 2013年第7期1878-1888,共11页
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed... In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO. 展开更多
关键词 cognitive radio spectrum allocation multi-objective optimization non-dominated sorting quantum particle swarmoptimization benchmark function
下载PDF
Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II 被引量:3
4
作者 Xi JIN Jie ZHANG +1 位作者 Jin-liang GAO Wen-yan WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期391-400,共10页
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol... Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions. 展开更多
关键词 Water supply system Water supply network Optimal rehabilitation MULTI-OBJECTIVE non-dominated sorting Ge-netic Algorithm (NSGA)
下载PDF
GREEDY NON-DOMINATED SORTING IN GENETIC ALGORITHM-ⅡFOR VEHICLE ROUTING PROBLEM IN DISTRIBUTION 被引量:4
5
作者 WEI Tian FAN Wenhui XU Huayu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期18-24,共7页
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode... Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply. 展开更多
关键词 Greedy non-dominated sorting in genetic algorithm-Ⅱ (GNSGA-Ⅱ) Vehicle routing problem (VRP) Multi-objective optimization
下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm
6
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Non-dominated Sorting Advanced Butterfly Optimization Algorithm for Multi-objective Problems
7
作者 Sushmita Sharma Nima Khodadadi +2 位作者 Apu Kumar Saha Farhad Soleimanian Gharehchopogh Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期819-843,共25页
This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of B... This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of BOA to alleviate its drawbacks before extending it into a multi-objective version.Due to better coverage and a well-distributed Pareto front,non-dominant rankings are applied to the modified BOA using the crowding distance strategy.Seven benchmark functions and eight real-world problems have been used to test the performance of multi-objective non-dominated advanced BOA(MONSBOA),including unconstrained,constrained,and real-world design multiple-objective,highly nonlinear constraint problems.Various performance metrics,such as Generational Distance(GD),Inverted Generational Distance(IGD),Maximum Spread(MS),and Spacing(S),have been used for performance comparison.It is demonstrated that the new MONSBOA algorithm is better than the compared algorithms in more than 80%occasions in solving problems with a variety of linear,nonlinear,continuous,and discrete characteristics based on the Pareto front when compared quantitatively.From all the analysis,it may be concluded that the suggested MONSBOA is capable of producing high-quality Pareto fronts with very competitive results with rapid convergence. 展开更多
关键词 Multi-objective problems Butterfly optimization algorithm non-dominated sorting Crowding distance
原文传递
Optimization of dynamic aperture by using non-dominated sorting genetic algorithm-Ⅱ in a diffraction-limited storage ring with solenoids for generating round beam
8
作者 Chongchong Du Sheng Wang +2 位作者 Jiuqing Wang Saike Tian Jinyu Wan 《Radiation Detection Technology and Methods》 CSCD 2023年第2期271-278,共8页
Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing t... Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing the number of photons getting discarded and better phase space match between photon and electron beam.Conventional methods of obtaining round beam inescapably results in a reduction of dynamic aperture(DA).In order to recover the DA as much as possible for improving the injection efficiency,the DA optimization by using Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)to generate round beam,particularly to one of the designed lattice of the High Energy Photon Source(HEPS)storage ring,are presented.Method According to the general unconstrained model of NSGA-Ⅱ,we modified the standard model by using parallel computing to optimize round beam lattices with errors,especially for a strong coupling,such as solenoid scheme.Results and conclusion The results of numerical tracking verify the correction of the theory framework of solenoids with fringe fields and demonstrates the feasibility on the HEPS storage ring with errors to operate in round beam mode after optimizing DA. 展开更多
关键词 Diffraction-limited storage rings Round beam non-dominated sorting genetic Algorithm-Ⅱ High energy photon source
原文传递
Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ 被引量:3
9
作者 Mahmoudreza Tabatabaei Amin Salehpour Jam Seyed Ahmad Hosseini 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期119-129,共11页
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating... Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model. 展开更多
关键词 Clustering Neural network non-dominated SORTING GENETIC algorithm (NSGA-Ⅱ) SEDIMENT RATING CURVE SELF-ORGANIZING map
原文传递
Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using non-dominated sorting genetic algorithm-II 被引量:3
10
作者 Sunil Dhingra Gian Bhushan Kashyap Kumar Dubey 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第1期81-94,共14页
The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response su... The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NOx, unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NOx, HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi- objective optimization problem is formulated. Non- dominated sorting genetic algorithm-II is used in predict- ing the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine outputand emission parameters depending upon their own requirements. 展开更多
关键词 jatropha biodiesel fuel properties responsesurface methodology multi-objective optimization non-dominated sorting genetic algorithm-II
原文传递
Non-dominated sorting based multi-page photo collage
11
作者 Yu Song Fan Tang +1 位作者 Weiming Dong Changsheng Xu 《Computational Visual Media》 SCIE EI CSCD 2022年第2期199-212,共14页
The development of social networking services(SNSs)revealed a surge in image sharing.The sharing mode of multi-page photo collage(MPC),which posts several image collages at a time,can often be observed on many social ... The development of social networking services(SNSs)revealed a surge in image sharing.The sharing mode of multi-page photo collage(MPC),which posts several image collages at a time,can often be observed on many social network platforms,which enables uploading images and arrangement in a logical order.This study focuses on the construction of MPC for an image collection and its formulation as an issue of joint optimization,which involves not only the arrangement in a single collage but also the arrangement among different collages.Novel balance-aware measurements,which merge graphic features and psychological achievements,are introduced.Non-dominated sorting genetic algorithm is adopted to optimize the MPC guided by the measurements.Experiments demonstrate that the proposed method can lead to diverse,visually pleasant,and logically clear MPC results,which are comparable to manually designed MPC results. 展开更多
关键词 multi-page photo collage balance-aware measurements non-dominated sorting genetic algorithm
原文传递
A Multi-Objective Optimization for Locating Maintenance Stations and Operator Dispatching of Corrective Maintenance
12
作者 Chao-Lung Yang Melkamu Mengistnew Teshome +1 位作者 Yu-Zhen Yeh Tamrat Yifter Meles 《Computers, Materials & Continua》 SCIE EI 2024年第6期3519-3547,共29页
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t... In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical. 展开更多
关键词 Corrective maintenance multi-objective optimization non-dominated sorting genetic algorithmⅢ operator allocation maintenance station location
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
13
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
考虑交货期的双资源柔性作业车间节能调度 被引量:2
14
作者 张洪亮 徐静茹 +1 位作者 谈波 徐公杰 《系统仿真学报》 CAS CSCD 北大核心 2023年第4期734-746,共13页
为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sor... 为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sorting genetic algorithmⅡ,INSGA-Ⅱ)进行求解。针对所优化的目标,设计了一种三阶段解码方法以获得高质量的可行解;利用动态自适应交叉和变异算子以获得更多优良个体;改进拥挤距离以获得收敛性和分布性更优的种群。将INSGA-Ⅱ与多种多目标优化算法进行对比分析,实验结果表明所提算法可行且有效。 展开更多
关键词 双资源约束 柔性作业车间 提前/拖期惩罚 能耗 INSGA-Ⅱ(improved non-dominated sorting genetic algorithmⅡ)
下载PDF
基于混合遗传蚁群算法的多目标FJSP问题研究 被引量:1
15
作者 赵小惠 卫艳芳 +3 位作者 赵雯 胡胜 王凯峰 倪奕棋 《组合机床与自动化加工技术》 北大核心 2023年第1期188-192,共5页
针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初... 针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初始信息素分布;其次,根据提出的自适应伪随机比例规则和改进的信息素更新规则来优化蚂蚁的遍历过程;最后,通过邻域搜索,扩大蚂蚁的搜索空间,从而提高解集的多样性。通过Kacem和BRdata算例进行实验验证,证明混合遗传蚁群算法具有更高的求解效率和更好解集多样性。 展开更多
关键词 柔性作业车间调度 多目标优化 NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ) 蚁群算法
下载PDF
Communicating with the non-dominant hemisphere:Implications for neurological rehabilitation 被引量:2
16
作者 Fabricio Ferreira de Oliveira Sheilla de Medeiros Correia Marin Paulo Henrique Ferreira Bertolucci 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第13期1236-1246,共11页
Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simult... Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simultaneously activated when language tasks are undertaken. Mechanisms of language recovery after brain injury to the dominant hemisphere seem to be relatively stereotyped, including activations of perilesional areas in the acute phase and of homologues of language areas in the non-dominant hemisphere in the subacute phase, later returning to dominant hemisphere activation in the chronic phase. Plasticity mechanisms reopen the critical period of language development, more specifically in what leads to disinhibition of the non-dominant hemisphere when brain lesions affect the dominant hemisphere. The non-dominant hemisphere plays an important role during recovery from aphasia, but currently available rehabilitation therapies have shown limited results for efficient language improvement. Large-scale randomized controlled trials that evaluate well-defined interventions in patients with aphasia are needed for stimulation of neuroplasticity mechanisms that enhance the role of the non-dominant hemisphere for language recovery. Ineffective treatment approaches should be replaced by more promising ones and the latter should be evaluated for proper application. The data generated by such studies could substantiate evidence-based rehabilitation strategies for patients with aphasia. 展开更多
关键词 neural regeneration reviews linguistics APHASIA language speech non-dominant hemisphere disability evaluation prognosis CEREBRUM function grants-supported paper neuroregeneration
下载PDF
Effects of core and non-dominant arm strength training on drive distance in elite golfers 被引量:2
17
作者 Dong Jun Sung Seung Jun Park +2 位作者 Sojung Kim Moon Seok Kwon Young-Tae Lim 《Journal of Sport and Health Science》 SCIE 2016年第2期219-225,共7页
Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists... Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists in the power of arm muscles between the dominant and non- dominant sides. The purposes of this study were to determine the effects of exercises strengthening the core and non-dominant arm muscles of elite golf players (handicap 〈 3) on the increase in drive distance, and to present a corresponding training scheme aimed at improving golf performance ability. Methods: Sixty elite golfers were randomized into the control group (CG, n = 20), core exercise group (CEG, n = 20), and group receiving a combination of muscle strengthening exercises of the non-dominant arm and the core (NCEG, n = 20). The 3 groups conducted the corresponding exercises for 8 weeks, after which the changes in drive distances and isokinetic strength were measured. Results: Significant differences in the overall improvement of drive distance were observed among the groups (p 〈 0.001). Enhancement of the drive distance of NCEG was greater than both CG (p 〈 0.001) and CEG (p = 0.001). Except for trunk flexion, all variables of the measurements of isokinetic strength for NCEG also showed the highest values compared to the other groups. Examination of the correlation between drive distance and isokinetic strength revealed significant correlations of all variables except trunk flexion, wrist extension, and elbow extension. Conclusion: The combination of core and non-dominant arm strength exercises can provide a more effective specialized training program than core alone training for golfers to increase their drive distances. 展开更多
关键词 Core exercise Drive distance Elite golfer Isokinetic strength non-dominant arm strength exercise
下载PDF
Modeling and Optimization of Electrical Discharge Machining of SiC Parameters, Using Neural Network and Non-Dominating Sorting Genetic Algorithm (NSGA II)
18
作者 Ramezan Ali MahdaviNejad 《Materials Sciences and Applications》 2011年第6期669-675,共7页
Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present... Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present work is aimed to optimize the surface roughness and material removal rate of electro discharge machining of SiC parameters simultaneously. As the output parameters are conflicting in nature, so there is no single combination of machining parameters, which provides the best machining performance. Artificial neural network (ANN) with back propagation algorithm is used to model the process. A multi-objective optimization method, non-dominating sorting genetic algorithm-II is used to optimize the process. Affects of three important input parameters of process viz., discharge current, pulse on time (Ton), pulse off time (Toff) on electric discharge machining of SiC are considered. Experiments have been conducted over a wide range of considered input parameters for training and verification of the model. Testing results demonstrate that the model is suitable for predicting the response parameters. A pareto-optimal set has been predicted in this work. 展开更多
关键词 Electro DISCHARGE MACHINING non-dominating SORTING Algorithm Neural Network REFEL SIC
下载PDF
Multi-objective optimization of the cathode catalyst layer micro-composition of polymer electrolyte membrane fuel cells using a multi-scale,two-phase fuel cell model and data-driven surrogates
19
作者 Neil Vaz Jaeyoo Choi +3 位作者 Yohan Cha Jihoon Kong Yooseong Park Hyunchul Ju 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期28-41,I0003,共15页
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes... Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance. 展开更多
关键词 Polymer electrolyte membrane fuel cell Surrogate modeling Multi-layer perceptron(MLP) Response surface analysis(RSA) non-dominated sorting genetic algorithmⅡ(NSGAⅡ)
下载PDF
Multiobjective Economic/Environmental Dispatch Using Harris Hawks Optimization Algorithm
20
作者 T.Mahalekshmi P.Maruthupandi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期445-460,共16页
The eminence of Economic Dispatch(ED)in power systems is signifi-cantly high as it involves in scheduling the available power from various power plants with less cost by compensating equality and inequality constrictio... The eminence of Economic Dispatch(ED)in power systems is signifi-cantly high as it involves in scheduling the available power from various power plants with less cost by compensating equality and inequality constrictions.The emission of toxic gases from power plants leads to environmental imbalance and so it is highly mandatory to rectify this issues for obtaining optimal perfor-mance in the power systems.In this present study,the Economic and Emission Dispatch(EED)problems are resolved as multi objective Economic Dispatch pro-blems by using Harris Hawk’s Optimization(HHO),which is capable enough to resolve the concerned issue in a wider range.In addition,the clustering approach is employed to maintain the size of the Pareto Optimal(PO)set during each itera-tion and fuzzy based approach is employed to extricate compromise solution from the Pareto front.To meet the equality constraint effectively,a new demand-based constraint handling mechanism is adopted.This paper also includes Wind energy conversion system(WECS)in EED problem.The conventional thermal generator cost is taken into account while considering the overall cost functions of wind energy like overestimated,underestimated and proportional costs.The quality of the non-dominated solution set is measured using quality metrics such as Set Spacing(SP)and Hyper-Volume(HV)and the solutions are compared with other conventional algorithms to prove its efficiency.The present study is validated with the outcomes of various literature papers. 展开更多
关键词 Optimization harris hawks clustering technique non-dominated solution
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部