期刊文献+
共找到11,587篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of pore geometry influence on fluid flow in heterogeneous porous media:A pore-scale study 被引量:1
1
作者 Ramin Soltanmohammadi Shohreh Iraji +3 位作者 Tales Rodrigues de Almeida Mateus Basso Eddy Ruidiaz Munoz Alexandre Campane Vidal 《Energy Geoscience》 EI 2024年第1期72-88,共17页
Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing ex... Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing excellent petrophysical properties,such as high porosity and permeability,these reservoirs typically exhibit a notably low recovery factor,sometimes falling below 10%.Previous research has indicated that various enhanced oil recovery(EOR)methods,such as water alternating gas(WAG),can substantially augment the recovery factor in pre-salt reservoirs,resulting in improvements of up to 20%.Nevertheless,the fluid flow mechanism within Brazilian carbonate reservoirs,characterized by complex pore geometry,remains unclear.Our study examines the behavior of fluid flow in a similar heterogeneous porous material,utilizing a plug sample obtained from a vugular segment of a Brazilian stromatolite outcrop,known to share analogies with certain pre-salt reservoirs.We conducted single-phase and multi-phase core flooding experiments,complemented by medical-CT scanning,to generate flow streamlines and evaluate the efficiency of water flooding.Subsequently,micro-CT scanning of the core sample was performed,and two cross-sections from horizontal and vertical plates were constructed.These cross-sections were then employed as geometries in a numerical simulator,enabling us to investigate the impact of pore geometry on fluid flow.Analysis of the pore-scale modeling and experimental data unveiled that the presence of dead-end pores and vugs results in a significant portion of the fluid remaining stagnant within these regions.Consequently,the injected fluid exhibits channeling-like behavior,leading to rapid breakthrough and low areal swept efficiency.Additionally,the numerical simulation results demonstrated that,irrespective of the size of the dead-end regions,the pressure variation within the dead-end vugs and pores is negligible.Despite the stromatolite's favorable petrophysical properties,including relatively high porosity and permeability,as well as the presence of interconnected large vugs,the recovery factor during water flooding remained low due to early breakthrough.These findings align with field data obtained from pre-salt reservoirs,providing an explanation for the observed low recovery factor during water flooding in such reservoirs. 展开更多
关键词 Pore-scale modeling Pore geometry Flow streamlines Computational modeling Digital rock analysis
下载PDF
A Generalized Array Factor for Time-Modulated Hexagonal Based Antenna Array Geometry With Novel Trapezoidal Switching
2
作者 Gopi Ram 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1967-1972,共6页
The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The va... The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The various forms of hexagonal antenna array geometries can be used for applications like surveillance tracking in phased array radar and wireless communication systems.This work proposes the generalized array factor(AF)for the hexagonal antenna array geometry based on time modulation.The time modulation in generalized hexagonal geometry can maintain the fixed static amplitude excitation,giving more flexibility over time.Furthermore,a novel trapezoidal switching function is also proposed and applied to the generalized array factor to enable future researchers to use this array factor in the field of advancement to observe how switching schemes like trapezoidal and rectangular affect the array pattern's side lobe level(SLL).The generalized equation can be utilized for the analysis and synthesis of radiation characteristics of the time-modulated hexagonal array(TMHA),time-modulated concentric hexagonal array(TMCHA),time-modulated hexagonal cylindrical array(TMHCA),and time-modulated hexagonal concentric cylindrical array(TMHCCA).The numerical result illustrates the generation of AF of time-modulated hexagonal structures and also shows that the trapezoidal switching sequence outperforms the rectangular switch using the cat swarm optimization(CSO)approach. 展开更多
关键词 Hexagonal array geometry radiation pattern time-modulation trapezoidal pulse
下载PDF
A photogrammetric approach for quantifying the evolution of rock joint void geometry under varying contact states
3
作者 Rui Yong Changshuo Wang +1 位作者 Nick Barton Shigui Du 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期461-477,共17页
Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques o... Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints. 展开更多
关键词 Rock joint Void geometry evolution PHOTOGRAMMETRY APERTURE Void volume Joint matching coefficient
下载PDF
CLASSIFICATIONS OF DUPIN HYPERSURFACES IN LIE SPHERE GEOMETRY
4
作者 Thomas E.CECIL 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期1-36,共36页
This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin h... This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres.Along with these classification results,many important concepts from Lie sphere geometry,such as curvature spheres,Lie curvatures,and Legendre lifts of submanifolds of S^(n)(or R^(n)),are described in detail.The paper also contains several important constructions of Dupin hypersurfaces with certain special properties. 展开更多
关键词 Dupin hypersurfaces isoparametric hypersurfaces Lie sphere geometry Lie sphere transformations Lie curvatures
下载PDF
Optimal AP Deployment in Cell-Free Massive MIMO Systems with LoS/NLoS Transmissions:A Stochastic Geometry Approach
5
作者 Jiang Ling Zhang Qi Zhu Hongbo 《China Communications》 SCIE CSCD 2024年第9期146-158,共13页
Cell-free massive multiple-input multipleoutput(MIMO)is a promising technology for future wireless communications,where a large number of distributed access points(APs)simultaneously serve all users over the same time... Cell-free massive multiple-input multipleoutput(MIMO)is a promising technology for future wireless communications,where a large number of distributed access points(APs)simultaneously serve all users over the same time-frequency resources.Since users and APs may locate close to each other,the line-of-sight(Lo S)transmission occurs more frequently in cell-free massive MIMO systems.Hence,in this paper,we investigate the cell-free massive MIMO system with Lo S and non-line-of-sight(NLo S)transmissions,where APs and users are both distributed according to Poisson point process.Using tools from stochastic geometry,we derive a tight lower bound for the user downlink achievable rate and we further obtain the energy efficiency(EE)by considering the power consumption on downlink payload transmissions and circuitry dissipation.Based on the analysis,the optimal AP density and AP antenna number that maximize the EE are obtained.It is found that compared with the previous work that only considers NLo S transmissions,the actual optimal AP density should be much smaller,and the maximized EE is actually much higher. 展开更多
关键词 cell-free massive MIMO energy efficiency LoS/NLoS transmissions stochastic geometry
下载PDF
Unveiling the geometric site dependent activity of spinel Co_(3)O_(4)for electrocatalytic chlorine evolution reaction
6
作者 Linke Cai Yao Liu +5 位作者 Jingfang Zhang Qiqi Jia Jiacheng Guan Hongwei Sun Yu Yu Yi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期95-103,共9页
Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catal... Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level. 展开更多
关键词 Chlorine evolution reaction geometry effects Active chlorine Electronic configuration optimization Spinel oxides
下载PDF
Modeling and Performance Analysis of UAV-Aided Millimeter Wave Cellular Networks with Stochastic Geometry
7
作者 Li Junruo Wang Yuanjie +2 位作者 Cui Qimei Hou Yanzhao Tao Xiaofeng 《China Communications》 SCIE CSCD 2024年第6期146-162,共17页
UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power... UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs. 展开更多
关键词 average rate DOWNLINK millimeter wave point process theory SIR stochastic geometry UAVaided cellular networks
下载PDF
Estimation of surface geometry on combustion characteristics of AP/HTPB propellant under rapid depressurization
8
作者 Kaixuan Chen Zhenwei Ye +1 位作者 Xiaochun Xue Yonggang Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期546-558,共13页
The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressu... The 2D sandwich model serves as a potent tool in exploring the influence of surface geometry on the combustion attributes of Ammonium perchlorate/Hydroxyl-terminated polybutadiene(AP/HTPB)propellant under rapid pressure decay.The thickness of the sandwich propellant is derived from slicing the 3D random particle packing,an approach that enables a more effective examination of the micro-flame structure.Comparative analysis of the predicted burning characteristics has been performed with experimental studies.The findings demonstrate a reasonable agreement,thereby validating the precision and soundness of the model.Based on the typical rapid depressurization environment of solid rocket motor(initial combustion pressure is 3 MPa and the maximum depressurization rate is 1000 MPa/s).A-type(a flatter surface),B-type(AP recesses from the combustion surface),and C-type(AP protrudes from the combustion surface)propellant combustion processes are numerically simulated.Upon comparison of the evolution of gas-phase flame between 0.1 and 1 ms,it is discerned that the flame strength and form created by the three sandwich models differ significantly at the beginning stage of depressurization,with the flame structures gradually becoming harmonized over time.Conclusions are drawn by comparison extinction times:the surface geometry plays a pivotal role in the combustion process,with AP protrusion favoring combustion the most. 展开更多
关键词 AP/HTPB propellant BDP model Rapid pressure decay Burning surface geometry
下载PDF
The Effects of the Geometry of a Current Collector with an Equal Open Ratio on Output Power of a Direct Methanol Fuel Cell
9
作者 Yingli Zhu Jiachi Xie +2 位作者 Mingwei Zhu Jun Zhang Miaomiao Li 《Energy Engineering》 EI 2024年第5期1161-1172,共12页
The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too ... The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too little attention has been given to how geometry(including the shape and feature size of the flow field)affects a current collector with an equal open ratio.In this paper,perforated and parallel current collectors with an equal open ratio of 50%and different feature sizes are designed,and the corresponding experimental results are shown to explain the geometry effects on the output power of the DMFC.The results indicate that the optimal feature sizes are between 2 and 2.5 mm for both perforated and parallel flow field in the current collectors with an equal open ratio of 50%.This means that for passive methanol fuel cells,to achieve the highest output power,the optimal feature size of the flow field in both anode and cathode current collectors is between 2 and 2.5 mm under the operating mode of this experiment.The effects of rib and channel position are also investigated,and the results indicate that the optimum pattern depends on the feature sizes of the flow field. 展开更多
关键词 Direct methanol fuel cell geometry open ratio current collector POSITION
下载PDF
Advancements in Time Modeling: Relationalism, Divisional Structures, and Geometry
10
作者 Steven D. P. Moore 《Journal of Applied Mathematics and Physics》 2024年第10期3358-3383,共26页
This article broadens terminology and approaches that continue to advance time modelling within a relationalist framework. Time is modeled as a single dimension, flowing continuously through independent privileged poi... This article broadens terminology and approaches that continue to advance time modelling within a relationalist framework. Time is modeled as a single dimension, flowing continuously through independent privileged points. Introduced as absolute point-time, abstract continuous time is a backdrop for concrete relational-based time that is finite and discrete, bound to the limits of a real-world system. We discuss how discrete signals at a point are used to temporally anchor zero-temporal points [t = 0] in linear time. Object-oriented temporal line elements, flanked by temporal point elements, have a proportional geometric identity quantifiable by a standard unit system and can be mapped on a natural number line. Durations, line elements, are divisible into ordered unit ratio elements using ancient timekeeping formulas. The divisional structure provides temporal classes for rotational (Rt24t) and orbital (Rt18) sample periods, as well as a more general temporal class (Rt12) applicable to either sample or frame periods. We introduce notation for additive cyclic counts of sample periods, including divisional units, for calendar-like formatting. For system modeling, unit structures with dihedral symmetry, group order, and numerical order are shown to be applicable to Euclidean modelling. We introduce new functions for bijective and non-bijective mapping, modular arithmetic for cyclic-based time counts, and a novel formula relating to a subgroup of Pythagorean triples, preserving dihedral n-polygon symmetries. This article presents a new approach to model time in a relationalistic framework. 展开更多
关键词 RELATIONALISM Mohist geometry Euclidean geometry Relational-Time Discrete-Time CONTINUOUS-TIME Planck Time Zero-Time
下载PDF
Geometries and electronic structures of Zr_(n)Cu(n=2–12) clusters: A joint machine-learning potential density functional theory investigation
11
作者 王一志 崔秀花 +3 位作者 刘静 井群 段海明 曹海宾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期595-602,共8页
Zr-based amorphous alloys have attracted extensive attention because of their large glassy formation ability, wide supercooled liquid region, high elasticity, and unique mechanical strength induced by their icosahedra... Zr-based amorphous alloys have attracted extensive attention because of their large glassy formation ability, wide supercooled liquid region, high elasticity, and unique mechanical strength induced by their icosahedral local structures.To determine the microstructures of Zr–Cu clusters, the stable and metastable geometry of Zr_(n)Cu(n=2–12) clusters are screened out via the CALYPSO method using machine-learning potentials, and then the electronic structures are investigated using density functional theory. The results show that the Zr_(n)Cu(n ≥ 3) clusters possess three-dimensional geometries, Zr_(n)Cu(n≥9) possess cage-like geometries, and the Zr_(12)Cu cluster has icosahedral geometry. The binding energy per atom gradually gets enlarged with the increase in the size of the clusters, and Zr_(n)Cu(n=5,7,9,12) have relatively better stability than their neighbors. The magnetic moment of most Zr_(n)Cu clusters is just 1μB, and the main components of the highest occupied molecular orbitals(HOMOs) in the Zr_(12)Cu cluster come from the Zr-d state. There are hardly any localized two-center bonds, and there are about 20 σ-type delocalized three-center bonds. 展开更多
关键词 geometries and electronic structures magnetic and chemical bonds machine learning potentials Zr–Cu clusters
下载PDF
Galerkin-based quasi-smooth manifold element(QSME)method for anisotropic heat conduction problems in composites with complex geometry
12
作者 Pan WANG Xiangcheng HAN +2 位作者 Weibin WEN Baolin WANG Jun LIANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期137-154,共18页
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ... The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations. 展开更多
关键词 anisotropic heat conduction quasi-smooth manifold element(QSME) composite with complex geometry numerical simulation finite element method(FEM)
下载PDF
Outage Probability Analysis for D2D-Enabled Heterogeneous Cellular Networks with Exclusion Zone:A Stochastic Geometry Approach
13
作者 Yulei Wang Li Feng +3 位作者 Shumin Yao Hong Liang Haoxu Shi Yuqiang Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期639-661,共23页
Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices... Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate. 展开更多
关键词 Device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets) exclusion zone stochastic geometry(SG) Matérn hard-core process(MHCP)
下载PDF
Hyperbolic Fibonacci and Lucas Functions, “Golden” Fibonacci Goniometry, Bodnar’s Geometry, and Hilbert’s Fourth Problem—Part II. A New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) 被引量:2
14
作者 Alexey Stakhov Samuil Aranson 《Applied Mathematics》 2011年第2期181-188,共8页
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New ... This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements. 展开更多
关键词 Euclid’s Fifth Postulate Lobachevski’s geometry HYPERBOLIC geometry PHYLLOTAXIS Bodnar’s geometry Hilbert’s Fourth Problem The “Golden” and “Metallic” Means Binet Formukas HYPERBOLIC FIBONACCI and Lucas Functions Gazale Formulas “Golden” FIBONACCI λ-Goniometry
下载PDF
Fractal Geometry:Axioms,Fractal Derivative and Its Geometrical Meaning 被引量:1
15
作者 V.K.Balkhanov 《Journal of Environmental & Earth Sciences》 2019年第1期1-5,共5页
Physics success is largely determined by using mathematics.Physics often themselves create the necessary mathematical apparatus.This article shows how you can construct a fractal calculus-mathematics of fractal geomet... Physics success is largely determined by using mathematics.Physics often themselves create the necessary mathematical apparatus.This article shows how you can construct a fractal calculus-mathematics of fractal geometry.In modem scientific literature often write from a firm that"there is no strict definition of fractals",to the more moderate that"objects in a certain sense,fractal and similar."We show that fractal geometry is a strict mathematical theory,defined by their axioms.This methodology allows the geometry of axiomatised naturally define fractal integrals and differentials.Consistent application on your input below the axiom gives the opportunity to develop effective methods of measurement of fractal dimension,geometri-cal interpretation of fractal derivative gain and open dual symmetry. 展开更多
关键词 FRACTAL geometry FRACTAL dimension FRACTAL CALCULUS DUALITY
下载PDF
Effect of tool geometry on ultraprecision machining of soft-brittle materials:a comprehensive review 被引量:3
16
作者 Weihai Huang Jiwang Yan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期60-98,共39页
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int... Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided. 展开更多
关键词 ultraprecision machining soft-brittle materials ductile machining tool geometries material removal mechanisms surface integrity
下载PDF
Noncommutative-Geometry Wormholes Based on the Casimir Effect 被引量:1
17
作者 Peter K. F. Kuhfittig 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期295-300,共6页
While wormholes are as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null... While wormholes are as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. In particular, holding a wormhole open requires a violation of the null energy condition, calling for the existence of exotic matter. The Casimir effect has shown that this physical requirement can be met on a small scale, thereby solving a key conceptual problem. The Casimir effect does not, however, guarantee that the small-scale violation is sufficient for supporting a macroscopic wormhole. The purpose of this paper is to connect the Casimir effect to noncommutative geometry, which also aims to accommodate small-scale effects, the difference being that these can now be viewed as intrinsic properties of spacetime. As a result, the noncommutative effects can be implemented by modifying only the energy momentum tensor in the Einstein field equations, while leaving the Einstein tensor unchanged. The wormhole can therefore be macroscopic in spite of the small Casimir effect. 展开更多
关键词 Traversable Wormholes Noncommutative geometry Casimir Effect
下载PDF
Geometrical Modeling of Crystal Structures with Use of Space of Elliptic Riemannian Geometry
18
作者 Stanislav Rudnev Boris Semukhin Andrey Klishin 《Materials Sciences and Applications》 2011年第6期526-536,共11页
The space of internal geometry of a model of a real crystal is supposed to be finite, closed, and with a constant Gaussian curvature equal to unity, permitting the realization of lattice systems in accordance with Fed... The space of internal geometry of a model of a real crystal is supposed to be finite, closed, and with a constant Gaussian curvature equal to unity, permitting the realization of lattice systems in accordance with Fedorov groups of transformations. For visualizing computations, the interpretation of geometrical objects on a Clifford surface (SK) in Riemannian geometry with the help of a 2D torus in a Euclidean space is used. The F-algorithm ensures a computation of 2D sections of models of point systems arranged perpendicularly to the symmetry axes l3, l4, and l6. The results of modeling can be used for calculations of geometrical sizes of crystal structures, nanostructures, parameters of the cluster organization of oxides, as well as for the development of practical applications connected with improving the structural characteristics of crystalline materials. 展开更多
关键词 F-Algorithm Crystal LATTICE Systems Microstructure RIEMANNIAN geometry SPACE of Interpretation
下载PDF
Solving Algebraic Problems with Geometry Diagrams Using Syntax-Semantics Diagram Understanding
19
作者 Litian Huang Xinguo Yu +1 位作者 Lei Niu Zihan Feng 《Computers, Materials & Continua》 SCIE EI 2023年第10期517-539,共23页
Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve bo... Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve both textual descriptions and geometry diagrams,requiring a joint understanding of these modalities.Although considerable progress has been made in solving math word problems,research on solving APGDs still cannot discover implicit geometry knowledge for solving APGDs,which limits their ability to effectively solve problems.In this study,a systematic and modular three-phase scheme is proposed to design an algorithm for solving APGDs that involve textual and diagrammatic information.The three-phase scheme begins with the application of the statetransformer paradigm,modeling the problem-solving process and effectively representing the intermediate states and transformations during the process.Next,a generalized APGD-solving approach is introduced to effectively extract geometric knowledge from the problem’s textual descriptions and diagrams.Finally,a specific algorithm is designed focusing on diagram understanding,which utilizes the vectorized syntax-semantics model to extract basic geometric relations from the diagram.A method for generating derived relations,which are essential for solving APGDs,is also introduced.Experiments on real-world datasets,including geometry calculation problems and shaded area problems,demonstrate that the proposed diagram understanding method significantly improves problem-solving accuracy compared to methods relying solely on simple diagram parsing. 展开更多
关键词 Algebraic problems with geometry diagrams problem-solving geometry diagram understanding state-transformer paradigm syntax-semantics model
下载PDF
Aging and Biological Oscillation: A Question of Geometry
20
作者 Jorge Barragán Sebastián Sánchez 《Advances in Aging Research》 CAS 2023年第1期1-9,共9页
Previous studies in different ethnic groups show changes in heart rate, respiratory rate, cortisol cycle, and sleep-wake cycle throughout life. Our purpose is to verify such changes by comparing the values of each var... Previous studies in different ethnic groups show changes in heart rate, respiratory rate, cortisol cycle, and sleep-wake cycle throughout life. Our purpose is to verify such changes by comparing the values of each variable before and after puberty. Puberty is associated with the end of growth and is an important point in our theoretical framework: when growth ends, changes occur in the geometry of the biological system. At the same time, this causes phase changes in the oscillatory variables, which are seen as chronodisruption. The results confirm the changes found by other authors in the evolution of the variables throughout life. Then, we can conclude that the variables studied present phase changes when growth ends, in accordance with the proposed theoretical framework. 展开更多
关键词 Chronodisruption Phase Changes geometry Changes After Puberty Wave Function Order-Chaos Transition Information Density Limit
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部