A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the...A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.展开更多
This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative ...This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .展开更多
In this paper, we further generalize the technique for constructing the normal (or pos- itive definite) and skew-Hermitian splitting iteration method for solving large sparse non- Hermitian positive definite system ...In this paper, we further generalize the technique for constructing the normal (or pos- itive definite) and skew-Hermitian splitting iteration method for solving large sparse non- Hermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove that the sequence produced by the PPS method con- verges unconditionally to the unique solution of the system. Moreover, we propose two kinds of typical practical choices of the PPS method and study the upper bound of the spectral radius of the iteration matrix. In addition, we show the optimal parameters such that the spectral radius achieves the minimum under certain conditions. Finally, some numerical examples are given to demonstrate the effectiveness of the considered methods.展开更多
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t...The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.展开更多
The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive de...The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.展开更多
In this paper, the author applies adjacent lattice method and Siegel mass formula to determine the classes of positive definite unimodular lattices of rank 4 over Z , and obtains that the class number of unit genus ...In this paper, the author applies adjacent lattice method and Siegel mass formula to determine the classes of positive definite unimodular lattices of rank 4 over Z , and obtains that the class number of unit genus gen( I 4 ) is nine and the class number of even unimodular lattices is three, and also gives the representative lattices of each class.展开更多
In this paper, the author applies adjacent lattice method and Siegel mass formula to determine the classes of positive definite unimodular lattices of rank 4 over Z , and obtains that the class number of unit genus ...In this paper, the author applies adjacent lattice method and Siegel mass formula to determine the classes of positive definite unimodular lattices of rank 4 over Z , and obtains that the class number of unit genus gen( I 4 ) is nine and the class number of even unimodular lattices is three, and also gives the representative lattices of each class.展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
In this paper,we study the nonlinear matrix equation X-A^(H)X^(-1)A=Q,where A,Q∈C^(n×n),Q is a Hermitian positive definite matrix and X∈C^(n×n)is an unknown matrix.We prove that the equation always has a u...In this paper,we study the nonlinear matrix equation X-A^(H)X^(-1)A=Q,where A,Q∈C^(n×n),Q is a Hermitian positive definite matrix and X∈C^(n×n)is an unknown matrix.We prove that the equation always has a unique Hermitian positive definite solution.We present two structure-preserving-doubling like algorithms to find the Hermitian positive definite solution of the equation,and the convergence theories are established.Finally,we show the effectiveness of the algorithms by numerical experiments.展开更多
To solve the symmetric positive definite linear system Ax = b on parallel and vector machines, multisplitting methods are considered. Here the s.p.d. (symmetric positive definite) matrix A need not be assumed in a spe...To solve the symmetric positive definite linear system Ax = b on parallel and vector machines, multisplitting methods are considered. Here the s.p.d. (symmetric positive definite) matrix A need not be assumed in a special form (e.g. the dissection form [11]). The main tool for deriving our methods is the diagonally compensated reduction (cf. [1]). The convergence of such methods is also discussed by using this tool. [WT5,5”HZ]展开更多
We discuss two-stage iterative methods for the solution of linear systemAx = b, and give a new proof of the comparison theorems of two-stage iterative methodfor an Hermitian positive definite matrix. Meanwhile, we put...We discuss two-stage iterative methods for the solution of linear systemAx = b, and give a new proof of the comparison theorems of two-stage iterative methodfor an Hermitian positive definite matrix. Meanwhile, we put forward two new versionsof well known comparison theorem and apply them to some examples.展开更多
The positive-definiteness and sparsity are the most important property of high-dimensional precision matrices. To better achieve those property, this paper uses a sparse lasso penalized D-trace loss under the positive...The positive-definiteness and sparsity are the most important property of high-dimensional precision matrices. To better achieve those property, this paper uses a sparse lasso penalized D-trace loss under the positive-definiteness constraint to estimate high-dimensional precision matrices. This paper derives an efficient accelerated gradient method to solve the challenging optimization problem and establish its converges rate as . The numerical simulations illustrated our method have competitive advantage than other methods.展开更多
In this paper,a new formulation of the Rubin’s q-translation is given,which leads to a reliable q-harmonic analysis.Next,related q-positive definite functions are introduced and studied,and a Bochner’s theorem is pr...In this paper,a new formulation of the Rubin’s q-translation is given,which leads to a reliable q-harmonic analysis.Next,related q-positive definite functions are introduced and studied,and a Bochner’s theorem is proved.展开更多
In this paper, we discuss completely positive definite maps over topological algebras. A Schwarz type inequality for n-positive definite maps, and the Stinespring representation theorem for completely positive definit...In this paper, we discuss completely positive definite maps over topological algebras. A Schwarz type inequality for n-positive definite maps, and the Stinespring representation theorem for completely positive definite maps over topological algebras are given.展开更多
In this paper, we discuss the positive definite problem of a binary quartic form and obtain a necessary and sufficient condition. In addition we give two examples to show that there are some errors in the paper [1].
Based on our previously proposed Wigner operator in entangled form, we introduce the generalized Wigner operator for two entangled particles with different masses, which is expected to be positive-definite. This appro...Based on our previously proposed Wigner operator in entangled form, we introduce the generalized Wigner operator for two entangled particles with different masses, which is expected to be positive-definite. This approach is able to convert the generalized Wigner operator into a pure state so that the positivity can be ensured. The technique of integration within an ordered product of operators is used in the discussion.展开更多
Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square...Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor.展开更多
基金Research supported by The China NNSF 0utstanding Young Scientist Foundation (No.10525102), The National Natural Science Foundation (No.10471146), and The National Basic Research Program (No.2005CB321702), P.R. China.
文摘A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.
文摘This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .
文摘In this paper, we further generalize the technique for constructing the normal (or pos- itive definite) and skew-Hermitian splitting iteration method for solving large sparse non- Hermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove that the sequence produced by the PPS method con- verges unconditionally to the unique solution of the system. Moreover, we propose two kinds of typical practical choices of the PPS method and study the upper bound of the spectral radius of the iteration matrix. In addition, we show the optimal parameters such that the spectral radius achieves the minimum under certain conditions. Finally, some numerical examples are given to demonstrate the effectiveness of the considered methods.
基金Supported by the National Natural Science Foundation of China(60473035)~~
文摘The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.
文摘The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.
文摘In this paper, the author applies adjacent lattice method and Siegel mass formula to determine the classes of positive definite unimodular lattices of rank 4 over Z , and obtains that the class number of unit genus gen( I 4 ) is nine and the class number of even unimodular lattices is three, and also gives the representative lattices of each class.
文摘In this paper, the author applies adjacent lattice method and Siegel mass formula to determine the classes of positive definite unimodular lattices of rank 4 over Z , and obtains that the class number of unit genus gen( I 4 ) is nine and the class number of even unimodular lattices is three, and also gives the representative lattices of each class.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
基金This research is supported by the National Natural Science Foundation of China(No.11871444).
文摘In this paper,we study the nonlinear matrix equation X-A^(H)X^(-1)A=Q,where A,Q∈C^(n×n),Q is a Hermitian positive definite matrix and X∈C^(n×n)is an unknown matrix.We prove that the equation always has a unique Hermitian positive definite solution.We present two structure-preserving-doubling like algorithms to find the Hermitian positive definite solution of the equation,and the convergence theories are established.Finally,we show the effectiveness of the algorithms by numerical experiments.
文摘To solve the symmetric positive definite linear system Ax = b on parallel and vector machines, multisplitting methods are considered. Here the s.p.d. (symmetric positive definite) matrix A need not be assumed in a special form (e.g. the dissection form [11]). The main tool for deriving our methods is the diagonally compensated reduction (cf. [1]). The convergence of such methods is also discussed by using this tool. [WT5,5”HZ]
基金This work is supported by NSF of Shanxi province,20011041.
文摘We discuss two-stage iterative methods for the solution of linear systemAx = b, and give a new proof of the comparison theorems of two-stage iterative methodfor an Hermitian positive definite matrix. Meanwhile, we put forward two new versionsof well known comparison theorem and apply them to some examples.
文摘The positive-definiteness and sparsity are the most important property of high-dimensional precision matrices. To better achieve those property, this paper uses a sparse lasso penalized D-trace loss under the positive-definiteness constraint to estimate high-dimensional precision matrices. This paper derives an efficient accelerated gradient method to solve the challenging optimization problem and establish its converges rate as . The numerical simulations illustrated our method have competitive advantage than other methods.
文摘In this paper,a new formulation of the Rubin’s q-translation is given,which leads to a reliable q-harmonic analysis.Next,related q-positive definite functions are introduced and studied,and a Bochner’s theorem is proved.
文摘In this paper, we discuss completely positive definite maps over topological algebras. A Schwarz type inequality for n-positive definite maps, and the Stinespring representation theorem for completely positive definite maps over topological algebras are given.
文摘In this paper, we discuss the positive definite problem of a binary quartic form and obtain a necessary and sufficient condition. In addition we give two examples to show that there are some errors in the paper [1].
文摘We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive definite Hermitian matrix.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10874174 and 10947017/A05)the Key Programs Foundation of Ministry of Education of China (Grant No.210115)
文摘Based on our previously proposed Wigner operator in entangled form, we introduce the generalized Wigner operator for two entangled particles with different masses, which is expected to be positive-definite. This approach is able to convert the generalized Wigner operator into a pure state so that the positivity can be ensured. The technique of integration within an ordered product of operators is used in the discussion.
文摘Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor.