The aim of this study was to compare the bone resorption differences between implant placement sites (IPS) and non-implant placement sites (NIPS) after autogenous block bone grafts in the anterior maxilla. Fourteen pa...The aim of this study was to compare the bone resorption differences between implant placement sites (IPS) and non-implant placement sites (NIPS) after autogenous block bone grafts in the anterior maxilla. Fourteen patients (58 edentulous sites) with alveolar atrophy in the anterior maxilla were treated with autogenous block bone grafts. CBCT examinations were performed at 1 month before surgery (T0), immediately after surgery (T1), 3 to 4 months after surgery (T2), 6 to 7 months after surgery before implant placement (T3), 12 to 13 months after surgery (T4), and the longest follow-up point (T5). Alveolar crestal and basal bone width (ACBW, ABBW), and alveolar bone height (ABH) were measured and divided into IPS (30 sites) and NIPS (28 sites). All results were compared by the Wilcoxon Signed Rank test. The bone resorption changes for both groups were the same. For these three parameters, ACBW didn’t change significantly from T2 to T3 and T4 to T5, ABBW didn’t change at every period from T2 to T5, and ABH didn’t change from T4 to T5. The bone resorption volume of ACBW and ABH in NIPS were more than in IPS after implant placement surgery, while the volume of ABBW was similar in both groups. At T5, the bone resorption percentages of ACBW, ABBW, and ABH were 25.57%, 16.85% and 43.84% in IPS, and 33.55%, 15.92% and 46.44% in NIPS. A more rapid loss of alveolar crest in NIPS resulted from implant placement surgery, and this reminded us of the importance of immediate implant placement.展开更多
Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. ...Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. These devices can be surgically implanted or attached using adhesive plates, dental sticks, elastic headbands, or bone conduction spectacles. Optimal fitting of bone conduction spectacles requires appropriate frame selection and contact pressure in the temporal and mastoid areas. The ANSI S3.6 and DIN EN ISO 389-3 standards recommend a contact area of approximately 1.75 cm2 and a maximum force of 5.4 N for effective sound transmission and comfort. Methods: This study aimed to evaluate the technical fit and mechanical stability of universal bone conduction hearing spectacles compared to established systems. A Sen-Pressure 02 thin-film sensor connected to an Arduino Uno R3 board measured contact force in the temporal and mastoid areas. Several BCHDs were tested, including the Bruckhoff la belle BC D50/70, Radioear B71 headset, Radioear B71 elastic headband, Cochlear Baha SoundArc M, and Cochlear Baha elastic headband, on a PVC artificial head, with data analyzed using ANOVA and LSD post hoc tests. Results: The la belle BC D50/70 spectacles showed comparable contact force to established BCHDs, ensuring adequate sound transmission and comfort. Significant differences were observed between the systems, with the Radioear B71 headset exhibiting the highest forces. The la belle BC D50/70 had similar forces to the Radioear B71 elastic headband. Conclusion: The la belle BC D50/70 universal bone conduction hearing spectacles are a technically equivalent alternative to established BCHDs, maintaining pressure below 5.4 N. Future research should explore the impact of different contact forces on performance and comfort, and the integration of force control in modified spectacles. This study indicates that the la belle BC D50/70 is a viable alternative that meets audiological practice requirements.展开更多
目的探讨无源植入性医疗器械(Non-Active Implantable Medical Devices,NAIMDs)临床使用安全的影响因素及相关风险防范措施。方法以“implantable medical devices”“use safety”为英文检索关键词,以“植入性医疗器械”“临床使用”...目的探讨无源植入性医疗器械(Non-Active Implantable Medical Devices,NAIMDs)临床使用安全的影响因素及相关风险防范措施。方法以“implantable medical devices”“use safety”为英文检索关键词,以“植入性医疗器械”“临床使用”“安全”为中文检索关键词,在PubMed、CNKI、万方等数据库进行文献检索、筛选及分析,整理归纳NAIMDs临床使用安全的影响因素。结果通过筛选得到51篇NAIMDs临床使用安全相关文献,确定了医护人员、患者、植入物、环境及管理是NAIMDs临床使用安全中的5个风险因素。结论NAIMDs临床使用安全的保障工作需要生产厂家、医疗机构、医护人员、患者及其家属等多方齐心协力,共同为患者健康保驾护航。展开更多
文摘The aim of this study was to compare the bone resorption differences between implant placement sites (IPS) and non-implant placement sites (NIPS) after autogenous block bone grafts in the anterior maxilla. Fourteen patients (58 edentulous sites) with alveolar atrophy in the anterior maxilla were treated with autogenous block bone grafts. CBCT examinations were performed at 1 month before surgery (T0), immediately after surgery (T1), 3 to 4 months after surgery (T2), 6 to 7 months after surgery before implant placement (T3), 12 to 13 months after surgery (T4), and the longest follow-up point (T5). Alveolar crestal and basal bone width (ACBW, ABBW), and alveolar bone height (ABH) were measured and divided into IPS (30 sites) and NIPS (28 sites). All results were compared by the Wilcoxon Signed Rank test. The bone resorption changes for both groups were the same. For these three parameters, ACBW didn’t change significantly from T2 to T3 and T4 to T5, ABBW didn’t change at every period from T2 to T5, and ABH didn’t change from T4 to T5. The bone resorption volume of ACBW and ABH in NIPS were more than in IPS after implant placement surgery, while the volume of ABBW was similar in both groups. At T5, the bone resorption percentages of ACBW, ABBW, and ABH were 25.57%, 16.85% and 43.84% in IPS, and 33.55%, 15.92% and 46.44% in NIPS. A more rapid loss of alveolar crest in NIPS resulted from implant placement surgery, and this reminded us of the importance of immediate implant placement.
文摘Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. These devices can be surgically implanted or attached using adhesive plates, dental sticks, elastic headbands, or bone conduction spectacles. Optimal fitting of bone conduction spectacles requires appropriate frame selection and contact pressure in the temporal and mastoid areas. The ANSI S3.6 and DIN EN ISO 389-3 standards recommend a contact area of approximately 1.75 cm2 and a maximum force of 5.4 N for effective sound transmission and comfort. Methods: This study aimed to evaluate the technical fit and mechanical stability of universal bone conduction hearing spectacles compared to established systems. A Sen-Pressure 02 thin-film sensor connected to an Arduino Uno R3 board measured contact force in the temporal and mastoid areas. Several BCHDs were tested, including the Bruckhoff la belle BC D50/70, Radioear B71 headset, Radioear B71 elastic headband, Cochlear Baha SoundArc M, and Cochlear Baha elastic headband, on a PVC artificial head, with data analyzed using ANOVA and LSD post hoc tests. Results: The la belle BC D50/70 spectacles showed comparable contact force to established BCHDs, ensuring adequate sound transmission and comfort. Significant differences were observed between the systems, with the Radioear B71 headset exhibiting the highest forces. The la belle BC D50/70 had similar forces to the Radioear B71 elastic headband. Conclusion: The la belle BC D50/70 universal bone conduction hearing spectacles are a technically equivalent alternative to established BCHDs, maintaining pressure below 5.4 N. Future research should explore the impact of different contact forces on performance and comfort, and the integration of force control in modified spectacles. This study indicates that the la belle BC D50/70 is a viable alternative that meets audiological practice requirements.
文摘目的探讨无源植入性医疗器械(Non-Active Implantable Medical Devices,NAIMDs)临床使用安全的影响因素及相关风险防范措施。方法以“implantable medical devices”“use safety”为英文检索关键词,以“植入性医疗器械”“临床使用”“安全”为中文检索关键词,在PubMed、CNKI、万方等数据库进行文献检索、筛选及分析,整理归纳NAIMDs临床使用安全的影响因素。结果通过筛选得到51篇NAIMDs临床使用安全相关文献,确定了医护人员、患者、植入物、环境及管理是NAIMDs临床使用安全中的5个风险因素。结论NAIMDs临床使用安全的保障工作需要生产厂家、医疗机构、医护人员、患者及其家属等多方齐心协力,共同为患者健康保驾护航。