Renal cell carcinoma (RCC) is one of the most important urological tumors and is one of the most common cancer diseases worldwide. Unfortunately, the treatment options are very limited due to resistances. Non-invasive...Renal cell carcinoma (RCC) is one of the most important urological tumors and is one of the most common cancer diseases worldwide. Unfortunately, the treatment options are very limited due to resistances. Non-invasive physical plasma (NIPP) is currently becoming a promising and very well tolerated treatment option for cancer. NIPP represents a highly energized gas and induc</span><span style="font-family:Verdana;">es varying antioncogenic cell responses in tumor cells. And also in t</span><span style="font-family:Verdana;">he case of RCC, NIPP treatment has great potential to enhance and supplement existing anticancer treatment options. Outstanding characteristics of NIPP treatment are 1) a precise and local effect on the treated tissue and 2) an almost exclusive effect on treated tumor cells without side effects. This allows </span><span style="font-family:Verdana;">an enormously large therapeutic window and makes the combination o</span><span style="font-family:Verdana;">f NIPP treatment and classical therapy appear particularly promising. In addition to R</span><span style="font-family:Verdana;">CC, plasma oncology offers an extremely innovative physical treatme</span><span style="font-family:Verdana;">nt method for future oncology in general.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This brief review article summarizes the current knowledge on the potential use of NIPP in RCC therapy.展开更多
We present calculations and improvement inspired by the work of Lorenzo Zaninetti, published in 2020, it concerns a problem whose origin dates back 1911 with so called Maxwell-Jüttner distribution these lies on t...We present calculations and improvement inspired by the work of Lorenzo Zaninetti, published in 2020, it concerns a problem whose origin dates back 1911 with so called Maxwell-Jüttner distribution these lies on the Lorentz factor , with . This work uses powerful modern software for a reconstruction of Zaninetti work, which computes with special functions, these are included in the Mathematica software, as by instance Bessel and Meijer G-functions ready to manipulate. A progress is made, it is possible to perform an integral that is not computed in Zaninetti paper. This author connects the correct relativistic probability law: the Maxwell-Jüttner to the synchrotron emissivity with a magnetic B field, this work generalize these results, using the linear Stark effect and deals with an electric field E.展开更多
The extraction of traveling wave solutions for nonlinear evolution equations is a challenge in various mathematics,physics,and engineering disciplines.This article intends to analyze several traveling wave solutions f...The extraction of traveling wave solutions for nonlinear evolution equations is a challenge in various mathematics,physics,and engineering disciplines.This article intends to analyze several traveling wave solutions for themodified regularized long-wave(MRLW)equation using several approaches,namely,the generalized algebraic method,the Jacobian elliptic functions technique,and the improved Q-expansion strategy.We successfully obtain analytical solutions consisting of rational,trigonometric,and hyperbolic structures.The adaptive moving mesh technique is applied to approximate the numerical solution of the proposed equation.The adaptive moving mesh method evenly distributes the points on the high error areas.This method perfectly and strongly reduces the error.We compare the constructed exact and numerical results to ensure the reliability and validity of the methods used.To better understand the considered equation’s physical meaning,we present some 2D and 3D figures.The exact and numerical approaches are efficient,powerful,and versatile for establishing novel bright,dark,bell-kink-type,and periodic traveling wave solutions for nonlinear PDEs.展开更多
X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulati...X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.展开更多
Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, f...Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, factors related to plasma’s unique properties, such as reactive species and electric fields, must be carefully considered.This review provides a concise summary of conventional TDD methods and subsequently offers a comprehensive examination of the current state-of-the-art in plasma-enhanced TDD. This includes an analysis of the impact of plasma on HaCaT human keratinocyte cells, ex vivo/in vivo studies, and clinical research on plasma-assisted TDD. Moreover, the review explores the effects of plasma on skin physical characteristics such as microhole formation, transepidermal water loss(TEWL), molecular structure of the stratum corneum(SC), and skin resistance. Additionally, it discusses the involvement of various reactive agents in plasma-enhanced TDD, encompassing electric fields,charged particles, UV/VUV radiation, heat, and reactive species. Lastly, the review briefly addresses the temporal behavior of the skin after plasma treatment, safety considerations, and potential risks associated with plasma-enhanced TDD.展开更多
Non-invasive prenatal gene diagnosis has been developed rapidly in the recent years, and numerous medical researchers are focusing on it. Such techniques could not only achieve prenatal diagnosis accurately, but also ...Non-invasive prenatal gene diagnosis has been developed rapidly in the recent years, and numerous medical researchers are focusing on it. Such techniques could not only achieve prenatal diagnosis accurately, but also prevent tangential illness in fetuses and thus, reduce the incidence of diseases. Moreover, it is non-invasive prenatal gene diagnosis that prevents potential threaten and danger to both mothers and fetuses. Therefore, it is welcomed by clinical gynecologist and obstetrian, researchers of medical genetics, and especially, pregnancies. This review article touches briefly on the advanced development of using cell-free DNA, RNA in maternal plasma and urine for non-invasive prenatal gene diagnosis.展开更多
The fundamental scientific problem for micro- and nano-electronics has been solved—methods for creating and investigating properties of physically doped materials with spatially inhomogeneous structure at the micro- ...The fundamental scientific problem for micro- and nano-electronics has been solved—methods for creating and investigating properties of physically doped materials with spatially inhomogeneous structure at the micro- and nano-meter scale have been developed. For the application of functional nanocomposite film coatings based on carbides of various transition metals structured by nanocarbon, for the first time in the world, we developed a new technique for their plasma deposition on a substrate without the use of reaction gases (hydrocarbons such as propane, acetylene, etc.). We have created nanostructured film materials, including those with increased strength and wear resistance, heterogeneous at the nanoscale, physically doped with nanostructures—quantum traps for free electrons. We learned how to simultaneously spray (in a plasma of a stationary magnetron discharge) carbides and graphite from a special mosaic target (carbide + carbon) made mechanically. As a result of such stationary sputtering of carbides and carbon, plasma nanostructured coatings were obtained from nanocarbides, metal nanocrystals and nanocarbon. Our design of such a target made it possible to intensively cool it in the magnetron body and spray its parts (carbide + carbon) simultaneously with a high power density of a constant plasma discharge—in the range of values from 40 W/cm<sup>2</sup> to 125 W/cm<sup>2</sup>. Such sputtering with a change in the power or the initial relative surface areas of various parts of the mosaic target (carbon and carbide) made it possible to change the average density of carbide, metal and carbon in a nanostructured (nanocarbon and metal nanostructures) coating. The changed relative density of various components of the nanocomposite (nanostructures of carbide, metal, and carbon in the form of graphite) significantly affected the physical properties of the nanocomposite coating. The creating method of multiphase nanostructured composite coatings (based on carbides of transition metals) with high hardness of 30 GPa, a low coefficient of friction to dry 0.13 - 0.16, with high heat resistance up to 3000<span style="white-space:normal;color:#4F4F4F;font-family:-apple-system, "font-size:16px;background-color:#FFFFFF;">°</span>C and thermal stability in the nanocrystalline state over 1200<span style="white-space:normal;color:#4F4F4F;font-family:-apple-system, "font-size:16px;background-color:#FFFFFF;">°</span>C is developed. It is established that the presence of nanographite in the composite significantly improves the impact strength and extends the range of possible applications, compared with pure carbides. The solution to this problem will allow creating new nanostructured materials, investigating their various physical parameters with high accuracy, designing, manufacturing and operating devices with new technical and functional capabilities, including for the nuclear industry and rocket science.展开更多
Review of arguments in refutation of Dyson’s alleged prohibition against use of device physics as to determining if Gravitons can be determined to exist is followed up by use of a hot Plasma within a Tokamak in a red...Review of arguments in refutation of Dyson’s alleged prohibition against use of device physics as to determining if Gravitons can be determined to exist is followed up by use of a hot Plasma within a Tokamak in a redo of the amplitude of alleged Gravitational waves. This overlaps with gravitons, and we follow up with an analysis of the pertinent form of Gravitons, i.e. do we have massless or massive gravitons. In addition we also obtain GW of amplitude as low as five meters above the Tokamak center such low strain values are extremely close to brane world GW, and strain values in early universe cosmology. This is after our device analysis. Using Grischuk and Sachin (1975) amplitude for the GW generation due to plasma in a toroid, we generalize this result for Tokamak physics. We obtain evidence for strain values up to?in a Tokamak center. These values are an order of magnitude sufficient to allow for possible detection of gravitational waves. The critical breakthrough is in utilizing a burning plasma drift current, which relies upon a thermal contribution to an electric field. Such low strain values are extremely close to brane world GW, and strain values in early universe cosmology. We conclude with statements as to comparing our basic results with those of Yan-Gang Miao, Ying-Jie Zhao as to their generalized HUP which gives support to the suppositions given in our comparison of the character of gravitons which are initially at the start of inflation versus those of our present era, as measured by the Tokamak.展开更多
Plasma technology has widespread applications in many fields, whereas the methods for manipulating plasma transport are limited to magnetic control. In this study, we used a simplified diffusion-migration approach to ...Plasma technology has widespread applications in many fields, whereas the methods for manipulating plasma transport are limited to magnetic control. In this study, we used a simplified diffusion-migration approach to describe plasma transport. The feasibility of the transformation theory for plasma transport was demonstrated.As potential applications, we designed three model devices capable of cloaking, concentrating, and rotating plasmas without disturbing the density profile of plasmas in the background. This research may help advance plasma technology in practical fields, such as medicine and chemistry.展开更多
Experiments performed with the aim to explain pattern formation in plasma devices offer, as I will show in this survey, a new insight into the mechanism by which locally matter transits spontaneously from a disordered...Experiments performed with the aim to explain pattern formation in plasma devices offer, as I will show in this survey, a new insight into the mechanism by which locally matter transits spontaneously from a disordered state into an ordered one. The essential news revealed by these experiments is the identification of a population of electrons that, driven at a critical distance from thermal equilibrium, is able to act as the organizer of the emergence and the survival of a complexity starting from chaos, i.e., from electric sparks the appearance of which is controlled by deterministic chaos. Supplied at a constant rate with thermal energy extracted by electrons from plasma, the complexity survives in a dynamical state performing operations in agreement with a code directly related to electrons thermal energy distribution function. Acting as a constituent of the matter, the population of electrons intrinsically controls the emergence and the survival of the complexity. Performing operations directly related to electron’s thermal energy distribution function, the complexity evolves stepwise in more advanced self-organized dynamical states, when this function is changed by an additional injection of energy. A set of nonlinear phenomena, not explainable by classical processes is involved in the mechanism by which the complexity emerges, survives and evolves. Thus, phenomena like Bose-Einstein condensation, macroscopic quantum coherence, direct and alternate Josephson effects, electron tunneling, negative differential impedance and others, potentially explain the emergence, functionality and vitality, i.e., the dynamical state of the complexity.展开更多
The late Academician Professor CAI Shidong was an outstanding plasma physicist who had made seminal contributions in both fundamental plasma theories and controlled thermonuclear fusion energy research. Professor CAI ...The late Academician Professor CAI Shidong was an outstanding plasma physicist who had made seminal contributions in both fundamental plasma theories and controlled thermonuclear fusion energy research. Professor CAI was also one of the pioneers in China's plasma physics research. In 1973, Professor CAI decided to leave U.S.展开更多
文摘Renal cell carcinoma (RCC) is one of the most important urological tumors and is one of the most common cancer diseases worldwide. Unfortunately, the treatment options are very limited due to resistances. Non-invasive physical plasma (NIPP) is currently becoming a promising and very well tolerated treatment option for cancer. NIPP represents a highly energized gas and induc</span><span style="font-family:Verdana;">es varying antioncogenic cell responses in tumor cells. And also in t</span><span style="font-family:Verdana;">he case of RCC, NIPP treatment has great potential to enhance and supplement existing anticancer treatment options. Outstanding characteristics of NIPP treatment are 1) a precise and local effect on the treated tissue and 2) an almost exclusive effect on treated tumor cells without side effects. This allows </span><span style="font-family:Verdana;">an enormously large therapeutic window and makes the combination o</span><span style="font-family:Verdana;">f NIPP treatment and classical therapy appear particularly promising. In addition to R</span><span style="font-family:Verdana;">CC, plasma oncology offers an extremely innovative physical treatme</span><span style="font-family:Verdana;">nt method for future oncology in general.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This brief review article summarizes the current knowledge on the potential use of NIPP in RCC therapy.
文摘We present calculations and improvement inspired by the work of Lorenzo Zaninetti, published in 2020, it concerns a problem whose origin dates back 1911 with so called Maxwell-Jüttner distribution these lies on the Lorentz factor , with . This work uses powerful modern software for a reconstruction of Zaninetti work, which computes with special functions, these are included in the Mathematica software, as by instance Bessel and Meijer G-functions ready to manipulate. A progress is made, it is possible to perform an integral that is not computed in Zaninetti paper. This author connects the correct relativistic probability law: the Maxwell-Jüttner to the synchrotron emissivity with a magnetic B field, this work generalize these results, using the linear Stark effect and deals with an electric field E.
文摘The extraction of traveling wave solutions for nonlinear evolution equations is a challenge in various mathematics,physics,and engineering disciplines.This article intends to analyze several traveling wave solutions for themodified regularized long-wave(MRLW)equation using several approaches,namely,the generalized algebraic method,the Jacobian elliptic functions technique,and the improved Q-expansion strategy.We successfully obtain analytical solutions consisting of rational,trigonometric,and hyperbolic structures.The adaptive moving mesh technique is applied to approximate the numerical solution of the proposed equation.The adaptive moving mesh method evenly distributes the points on the high error areas.This method perfectly and strongly reduces the error.We compare the constructed exact and numerical results to ensure the reliability and validity of the methods used.To better understand the considered equation’s physical meaning,we present some 2D and 3D figures.The exact and numerical approaches are efficient,powerful,and versatile for establishing novel bright,dark,bell-kink-type,and periodic traveling wave solutions for nonlinear PDEs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11921006 and 12175058)the Beijing Distinguished Young Scientist Program and National Grand Instrument Project (Grant No.SQ2019YFF01014400)+1 种基金the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park (Grant No.Z231100006023003)in part funded by United Kingdom EPSRC (Grant Nos.EP/G054950/1,EP/G056803/1,EP/G055165/1,and EP/M022463/1)。
文摘X-ray sources with tunable energy spectra have a wide range of applications in different scenarios due to their different penetration depths.However,existing x-ray sources face difficulties in terms of energy regulation.In this paper,we present a scheme for tuning the energy spectrum of a betatron x-ray generated from a relativistic electron bunch oscillating in a plasma wakefield.The center energy of the x-ray source can be tuned from several keV to several hundred keV by changing the plasma density,thereby extending the control range by an order of magnitude.At different central energies,the brightness of the betatron radiation is in the range of 3.7×10^(22)to 5.5×10^(22)photons/(0.1%BW·s·mm^(2)·mrad^(2))and the photon divergence angle is about 2 mrad.This high-brightness,energy-controlled betatron source could pave the way to a wide range of applications requiring photons of specific energy,such as phase-contrast imaging in medicine,non-destructive testing and material analysis in industry,and imaging in nuclear physics.
基金supported by National Natural Science Foundation of China(Nos.52277150,51977096,12005076 and 52130701)the National Key Research and Development Program of China(No.2021YFE0114700)。
文摘Plasma-enhanced transdermal drug delivery(TDD) presents advantages over traditional methods,including painless application, minimal skin damage, and rapid recovery of permeability. To harness its clinical potential, factors related to plasma’s unique properties, such as reactive species and electric fields, must be carefully considered.This review provides a concise summary of conventional TDD methods and subsequently offers a comprehensive examination of the current state-of-the-art in plasma-enhanced TDD. This includes an analysis of the impact of plasma on HaCaT human keratinocyte cells, ex vivo/in vivo studies, and clinical research on plasma-assisted TDD. Moreover, the review explores the effects of plasma on skin physical characteristics such as microhole formation, transepidermal water loss(TEWL), molecular structure of the stratum corneum(SC), and skin resistance. Additionally, it discusses the involvement of various reactive agents in plasma-enhanced TDD, encompassing electric fields,charged particles, UV/VUV radiation, heat, and reactive species. Lastly, the review briefly addresses the temporal behavior of the skin after plasma treatment, safety considerations, and potential risks associated with plasma-enhanced TDD.
文摘Non-invasive prenatal gene diagnosis has been developed rapidly in the recent years, and numerous medical researchers are focusing on it. Such techniques could not only achieve prenatal diagnosis accurately, but also prevent tangential illness in fetuses and thus, reduce the incidence of diseases. Moreover, it is non-invasive prenatal gene diagnosis that prevents potential threaten and danger to both mothers and fetuses. Therefore, it is welcomed by clinical gynecologist and obstetrian, researchers of medical genetics, and especially, pregnancies. This review article touches briefly on the advanced development of using cell-free DNA, RNA in maternal plasma and urine for non-invasive prenatal gene diagnosis.
文摘The fundamental scientific problem for micro- and nano-electronics has been solved—methods for creating and investigating properties of physically doped materials with spatially inhomogeneous structure at the micro- and nano-meter scale have been developed. For the application of functional nanocomposite film coatings based on carbides of various transition metals structured by nanocarbon, for the first time in the world, we developed a new technique for their plasma deposition on a substrate without the use of reaction gases (hydrocarbons such as propane, acetylene, etc.). We have created nanostructured film materials, including those with increased strength and wear resistance, heterogeneous at the nanoscale, physically doped with nanostructures—quantum traps for free electrons. We learned how to simultaneously spray (in a plasma of a stationary magnetron discharge) carbides and graphite from a special mosaic target (carbide + carbon) made mechanically. As a result of such stationary sputtering of carbides and carbon, plasma nanostructured coatings were obtained from nanocarbides, metal nanocrystals and nanocarbon. Our design of such a target made it possible to intensively cool it in the magnetron body and spray its parts (carbide + carbon) simultaneously with a high power density of a constant plasma discharge—in the range of values from 40 W/cm<sup>2</sup> to 125 W/cm<sup>2</sup>. Such sputtering with a change in the power or the initial relative surface areas of various parts of the mosaic target (carbon and carbide) made it possible to change the average density of carbide, metal and carbon in a nanostructured (nanocarbon and metal nanostructures) coating. The changed relative density of various components of the nanocomposite (nanostructures of carbide, metal, and carbon in the form of graphite) significantly affected the physical properties of the nanocomposite coating. The creating method of multiphase nanostructured composite coatings (based on carbides of transition metals) with high hardness of 30 GPa, a low coefficient of friction to dry 0.13 - 0.16, with high heat resistance up to 3000<span style="white-space:normal;color:#4F4F4F;font-family:-apple-system, "font-size:16px;background-color:#FFFFFF;">°</span>C and thermal stability in the nanocrystalline state over 1200<span style="white-space:normal;color:#4F4F4F;font-family:-apple-system, "font-size:16px;background-color:#FFFFFF;">°</span>C is developed. It is established that the presence of nanographite in the composite significantly improves the impact strength and extends the range of possible applications, compared with pure carbides. The solution to this problem will allow creating new nanostructured materials, investigating their various physical parameters with high accuracy, designing, manufacturing and operating devices with new technical and functional capabilities, including for the nuclear industry and rocket science.
文摘Review of arguments in refutation of Dyson’s alleged prohibition against use of device physics as to determining if Gravitons can be determined to exist is followed up by use of a hot Plasma within a Tokamak in a redo of the amplitude of alleged Gravitational waves. This overlaps with gravitons, and we follow up with an analysis of the pertinent form of Gravitons, i.e. do we have massless or massive gravitons. In addition we also obtain GW of amplitude as low as five meters above the Tokamak center such low strain values are extremely close to brane world GW, and strain values in early universe cosmology. This is after our device analysis. Using Grischuk and Sachin (1975) amplitude for the GW generation due to plasma in a toroid, we generalize this result for Tokamak physics. We obtain evidence for strain values up to?in a Tokamak center. These values are an order of magnitude sufficient to allow for possible detection of gravitational waves. The critical breakthrough is in utilizing a burning plasma drift current, which relies upon a thermal contribution to an electric field. Such low strain values are extremely close to brane world GW, and strain values in early universe cosmology. We conclude with statements as to comparing our basic results with those of Yan-Gang Miao, Ying-Jie Zhao as to their generalized HUP which gives support to the suppositions given in our comparison of the character of gravitons which are initially at the start of inflation versus those of our present era, as measured by the Tokamak.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 11725521 and 12035004)the Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1414700)。
文摘Plasma technology has widespread applications in many fields, whereas the methods for manipulating plasma transport are limited to magnetic control. In this study, we used a simplified diffusion-migration approach to describe plasma transport. The feasibility of the transformation theory for plasma transport was demonstrated.As potential applications, we designed three model devices capable of cloaking, concentrating, and rotating plasmas without disturbing the density profile of plasmas in the background. This research may help advance plasma technology in practical fields, such as medicine and chemistry.
文摘Experiments performed with the aim to explain pattern formation in plasma devices offer, as I will show in this survey, a new insight into the mechanism by which locally matter transits spontaneously from a disordered state into an ordered one. The essential news revealed by these experiments is the identification of a population of electrons that, driven at a critical distance from thermal equilibrium, is able to act as the organizer of the emergence and the survival of a complexity starting from chaos, i.e., from electric sparks the appearance of which is controlled by deterministic chaos. Supplied at a constant rate with thermal energy extracted by electrons from plasma, the complexity survives in a dynamical state performing operations in agreement with a code directly related to electrons thermal energy distribution function. Acting as a constituent of the matter, the population of electrons intrinsically controls the emergence and the survival of the complexity. Performing operations directly related to electron’s thermal energy distribution function, the complexity evolves stepwise in more advanced self-organized dynamical states, when this function is changed by an additional injection of energy. A set of nonlinear phenomena, not explainable by classical processes is involved in the mechanism by which the complexity emerges, survives and evolves. Thus, phenomena like Bose-Einstein condensation, macroscopic quantum coherence, direct and alternate Josephson effects, electron tunneling, negative differential impedance and others, potentially explain the emergence, functionality and vitality, i.e., the dynamical state of the complexity.
文摘The late Academician Professor CAI Shidong was an outstanding plasma physicist who had made seminal contributions in both fundamental plasma theories and controlled thermonuclear fusion energy research. Professor CAI was also one of the pioneers in China's plasma physics research. In 1973, Professor CAI decided to leave U.S.
基金the financial support from the National Natural Science Foundation of China(Nos.52172067,92160202)Natural Science Foundation of Guangdong Province,China(Nos.2021B1515020038,2020B1515020036)+1 种基金Guangdong Special Support Program,China(No.2019BT02C629)Guangdong Academy of Sciences Program,China(No.2020GDASYL20200104030)。