A mathematical model of nitrogen oxide (NOx) absorption is adopted and solved for adiabatic operation of a column with structured packings on the basis of the film theory. Removal rate, outlet concentration, oxidati...A mathematical model of nitrogen oxide (NOx) absorption is adopted and solved for adiabatic operation of a column with structured packings on the basis of the film theory. Removal rate, outlet concentration, oxidation degree of NOx and outlet acid concentration, liquid acid temperature are simulated and tested. The gas phase reactions and equilibria, gas phase mass transfer, interracial equilibria, and liquid phase reactions are considered in the model. Absorption of nitrogen oxides is studied in packed with Mellapak 250Y columns in series in an industrial process of 20000 t oxalic acid per year. Favorable agreement is shown between the model predictions and the on-site observations.展开更多
文摘A mathematical model of nitrogen oxide (NOx) absorption is adopted and solved for adiabatic operation of a column with structured packings on the basis of the film theory. Removal rate, outlet concentration, oxidation degree of NOx and outlet acid concentration, liquid acid temperature are simulated and tested. The gas phase reactions and equilibria, gas phase mass transfer, interracial equilibria, and liquid phase reactions are considered in the model. Absorption of nitrogen oxides is studied in packed with Mellapak 250Y columns in series in an industrial process of 20000 t oxalic acid per year. Favorable agreement is shown between the model predictions and the on-site observations.