在基于时间到达差(Time Difference Of Arrival,TDOA)的定位估计算法中,CHAN算法计算量小,能够在视距(Line Of Sight,LOS)传播环境下获得较高的定位精度,因而被广泛应用。但是在非视距传播环境(Non-Line Of Sight,NLOS)下,该算法的定位...在基于时间到达差(Time Difference Of Arrival,TDOA)的定位估计算法中,CHAN算法计算量小,能够在视距(Line Of Sight,LOS)传播环境下获得较高的定位精度,因而被广泛应用。但是在非视距传播环境(Non-Line Of Sight,NLOS)下,该算法的定位性能会明显下降。因为在非视距情况,尤其是密集城区,由于建筑物等障碍物的存在使得无线电信号无法直线传播,这就引入了NLOS误差;而CHAN算法中的加权矩阵只考虑了系统误差,无法消除NLOS误差。文中在基于视距环境下CHAN算法的研究基础上,对非视距引入的NLOS误差的统计特性进行分析,给出一种在NLOS情况下,通过优化非视距TDOA测量值误差的方法来改善非视距下的CHAN算法性能,并通过仿真分析了CHAN算法在不同环境模型下的定位性能。仿真结果表明,改善的CHAN算法在NLOS环境下能取得较好的定位性能。展开更多
To mitigate the impacts of non-line-of-sight(NLOS) errors on location accuracy, a non-parametric belief propagation(NBP)-based localization algorithm in the NLOS environment for wireless sensor networks is propose...To mitigate the impacts of non-line-of-sight(NLOS) errors on location accuracy, a non-parametric belief propagation(NBP)-based localization algorithm in the NLOS environment for wireless sensor networks is proposed.According to the amount of prior information known about the probabilities and distribution parameters of the NLOS error distribution, three different cases of the maximum a posterior(MAP) localization problems are introduced. The first case is the idealized case, i. e., the range measurements in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known. The probability of a communication of a pair of nodes in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known in the second case. The third case is the worst case, in which only knowledge about noise measurement power is obtained. The proposed algorithm is compared with the maximum likelihood-simulated annealing(ML-SA)-based localization algorithm. Simulation results demonstrate that the proposed algorithm provides good location accuracy and considerably outperforms the ML-SA-based localization algorithm for every case. The root mean square error(RMSE)of the location estimate of the NBP-based localization algorithm is reduced by about 1. 6 m in Case 1, 1. 8 m in Case 2 and 2. 3 m in Case 3 compared with the ML-SA-based localization algorithm. Therefore, in the NLOS environments,the localization algorithms can obtain the location estimates with high accuracy by using the NBP method.展开更多
In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorith...In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorithm by utilizing scatterer information is proposed.The linearized region of the mobile station(MS)is obtained according to the base station(BS)coordinates and the TOA measurements.The candidate points(CPs)of the MS are generated from this region.Then,using the measured TOA and AOA measurements,the radius of each scatterer is computed.Compared with the prior scatterer information,true CPs are obtained among all the CPs.The adaptive fuzzy clustering(AFC)technology is adopted to estimate the position of the MS with true CPs.Finally,simulations are conducted to evaluate the performance of the algorithm.The results demonstrate that the proposed location algorithm can significantly mitigate the NLOS effect and efficiently estimate the MS position.展开更多
In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environ...In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.展开更多
This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good resul...This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.展开更多
文摘在基于时间到达差(Time Difference Of Arrival,TDOA)的定位估计算法中,CHAN算法计算量小,能够在视距(Line Of Sight,LOS)传播环境下获得较高的定位精度,因而被广泛应用。但是在非视距传播环境(Non-Line Of Sight,NLOS)下,该算法的定位性能会明显下降。因为在非视距情况,尤其是密集城区,由于建筑物等障碍物的存在使得无线电信号无法直线传播,这就引入了NLOS误差;而CHAN算法中的加权矩阵只考虑了系统误差,无法消除NLOS误差。文中在基于视距环境下CHAN算法的研究基础上,对非视距引入的NLOS误差的统计特性进行分析,给出一种在NLOS情况下,通过优化非视距TDOA测量值误差的方法来改善非视距下的CHAN算法性能,并通过仿真分析了CHAN算法在不同环境模型下的定位性能。仿真结果表明,改善的CHAN算法在NLOS环境下能取得较好的定位性能。
基金The National Natural Science Foundation of China(No.61271207,61372104)
文摘To mitigate the impacts of non-line-of-sight(NLOS) errors on location accuracy, a non-parametric belief propagation(NBP)-based localization algorithm in the NLOS environment for wireless sensor networks is proposed.According to the amount of prior information known about the probabilities and distribution parameters of the NLOS error distribution, three different cases of the maximum a posterior(MAP) localization problems are introduced. The first case is the idealized case, i. e., the range measurements in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known. The probability of a communication of a pair of nodes in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known in the second case. The third case is the worst case, in which only knowledge about noise measurement power is obtained. The proposed algorithm is compared with the maximum likelihood-simulated annealing(ML-SA)-based localization algorithm. Simulation results demonstrate that the proposed algorithm provides good location accuracy and considerably outperforms the ML-SA-based localization algorithm for every case. The root mean square error(RMSE)of the location estimate of the NBP-based localization algorithm is reduced by about 1. 6 m in Case 1, 1. 8 m in Case 2 and 2. 3 m in Case 3 compared with the ML-SA-based localization algorithm. Therefore, in the NLOS environments,the localization algorithms can obtain the location estimates with high accuracy by using the NBP method.
基金The National High Technology Research and Development Program of China(863Program)(No.2008AA01Z227)the National Natural Science Foundation of China(No.60872075)
文摘In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorithm by utilizing scatterer information is proposed.The linearized region of the mobile station(MS)is obtained according to the base station(BS)coordinates and the TOA measurements.The candidate points(CPs)of the MS are generated from this region.Then,using the measured TOA and AOA measurements,the radius of each scatterer is computed.Compared with the prior scatterer information,true CPs are obtained among all the CPs.The adaptive fuzzy clustering(AFC)technology is adopted to estimate the position of the MS with true CPs.Finally,simulations are conducted to evaluate the performance of the algorithm.The results demonstrate that the proposed location algorithm can significantly mitigate the NLOS effect and efficiently estimate the MS position.
基金supported by National Natural Science Foundation of China(NSFC)(No.62101274 and 62101275)Natural Science Foundation of Jiangsu Province(BK20210640)Open Research Fund of National Mobile Communications Research Laboratory Southeast University under Grant 2021D03。
文摘In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.
基金supported by the National Natural Science Foundation of China(62201510,62001091,61801435,61871080,61801435)the Initial Scientific Research Foundation of University of Science and Technology of China(Y030202059018051)+2 种基金Yangtze River Scholar Program,Sichuan Science and Technology Program(2019JDJQ0014)111 Project(B17008)Henan Provincial Department of Science and Technology Research Project(202102210315,212102210029,202102210-137).
文摘This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.