The interactions of HSA with DA have received great attention nowadays due to its significant effect in the biomedical field and overall health. The main aim of this work is to examine the interaction between DA and H...The interactions of HSA with DA have received great attention nowadays due to its significant effect in the biomedical field and overall health. The main aim of this work is to examine the interaction between DA and HSA at physiological conditions. Upon addition of DA to HSA, the fluorescence emission was quenched with quenching constant Kq = 1.32 × 109 L⋅mol−1⋅s−1 and the binding constant of DA with HSA is found to be K = 4.4 × 102 mainly indicating dynamic quenching. The HSA conformation was altered upon binding of DA to HSA with an increase in α-helix and a decrease in β-sheets suggesting unfolding of HSA secondary structure due to weak intermolecular interaction with HSA. In view of the evidence presented, it is important to understand the details of the interactions of HSA with DA which will be crucial in the design of new DA-inspired drugs and help revealing vital details to better understand the HSA’s role as a transporter for many drugs.展开更多
Photoinduced electron transfer reaction between the excited state ruthenium (II) polypyridyl complexes and quinones has been investigated in cetyltrimethylammonium bromide using luminescent quenching techniques. The c...Photoinduced electron transfer reaction between the excited state ruthenium (II) polypyridyl complexes and quinones has been investigated in cetyltrimethylammonium bromide using luminescent quenching techniques. The complexes have the absorption and emission maximum in the range 452 - 468 nm and 594 - 617 nm respectively. The static nature of quenching is confirmed from the ground state absorption studies. The association constants for the complexes with quinones are calculated from the Benesi-Hildebrand plots using absorption spectral data. The value of quenching rate constant (kq) is highly sensitive to the nature of the ligand and the quencher, the medium, structure and size of the quenchers. Compared to the aqueous medium, the electron transfer rate is altered in CTAB medium. The oxidative nature of the quenching is confirmed by the formation of Ru3+ ion and quinone anion radical.展开更多
Multi-scale analysis and non-linear analysis were combined to investigate the hydrodynamics of fluidized beds with and without horizontal tubes. Pressure fluctuations were measured and analyzed employing discrete wave...Multi-scale analysis and non-linear analysis were combined to investigate the hydrodynamics of fluidized beds with and without horizontal tubes. Pressure fluctuations were measured and analyzed employing discrete wavelet analysis, recurrence plot analysis, and recurrence quantification analysis. A systematic procedure was followed to determine wavelet parameters. At low gas velocities, the energy of macro-structures reduces with the addition of the first tube and then increases with the addition of a second tube. However, there is no notable difference at high gas velocities. Determinism is high for the bed without tubes, which can be attributed to the periodic behavior of bubbles. Determinism decreases with the addition of tubes because the breakage of bubbles results in less periodic behavior. The three methods of analysis used in this study captured the effects of immersed tubes on the hydrodynamics of fluidized beds. Recurrence quantitative analysis was found to be a powerful and easy-to-use method that can capture the nonlinear characteristics of fluidized beds much more quickly than conventional methods of nonlinear analysis. This method can thus be effectively used for the online monitoring of hydrodynamic changes in fluidized beds.展开更多
Removing excessive free radicals (FRs) by a synthetic chemical might give a clue for treatment of many iron-mediated diseases. Deferoxamine (DFO) can be one of the chemicals of choice for the clue. To investigate ...Removing excessive free radicals (FRs) by a synthetic chemical might give a clue for treatment of many iron-mediated diseases. Deferoxamine (DFO) can be one of the chemicals of choice for the clue. To investigate photoredox properties of DFO, its quenching effect on superoxide radical (O2°), hydrogen peroxide (H202) and hydroxyl radical (OH~) was examined using luminol and ortho-phenanthroline (o- phen) chemiluminescence (CL) systems and UV-vis spectrophotometry. Stern-Volmer equation was also used for the CL kinetics. The observed quenching effect of DFO on CL]photon production in luminol and o-phen CL systems strongly confirmed the static arm of quenching properties of DFO on OH° and H2O2, but much less pronounced on O2^-°; the quenching property was maximal when iron was involved in the reaction systems. The Stern-Volmer plots in the designed photochemical reaction systems also confirmed a potent quenching effect of DFO on FR-mediated CL. Our study highlights strong photoreducing and antioxidant properties of DFO with huge quenching capacity on excessive FRs, and thus implies its promising prospects for therapeutic applications.展开更多
文摘The interactions of HSA with DA have received great attention nowadays due to its significant effect in the biomedical field and overall health. The main aim of this work is to examine the interaction between DA and HSA at physiological conditions. Upon addition of DA to HSA, the fluorescence emission was quenched with quenching constant Kq = 1.32 × 109 L⋅mol−1⋅s−1 and the binding constant of DA with HSA is found to be K = 4.4 × 102 mainly indicating dynamic quenching. The HSA conformation was altered upon binding of DA to HSA with an increase in α-helix and a decrease in β-sheets suggesting unfolding of HSA secondary structure due to weak intermolecular interaction with HSA. In view of the evidence presented, it is important to understand the details of the interactions of HSA with DA which will be crucial in the design of new DA-inspired drugs and help revealing vital details to better understand the HSA’s role as a transporter for many drugs.
文摘Photoinduced electron transfer reaction between the excited state ruthenium (II) polypyridyl complexes and quinones has been investigated in cetyltrimethylammonium bromide using luminescent quenching techniques. The complexes have the absorption and emission maximum in the range 452 - 468 nm and 594 - 617 nm respectively. The static nature of quenching is confirmed from the ground state absorption studies. The association constants for the complexes with quinones are calculated from the Benesi-Hildebrand plots using absorption spectral data. The value of quenching rate constant (kq) is highly sensitive to the nature of the ligand and the quencher, the medium, structure and size of the quenchers. Compared to the aqueous medium, the electron transfer rate is altered in CTAB medium. The oxidative nature of the quenching is confirmed by the formation of Ru3+ ion and quinone anion radical.
基金supported by the Iranian National Science Foundation(Grant No.93/36348)
文摘Multi-scale analysis and non-linear analysis were combined to investigate the hydrodynamics of fluidized beds with and without horizontal tubes. Pressure fluctuations were measured and analyzed employing discrete wavelet analysis, recurrence plot analysis, and recurrence quantification analysis. A systematic procedure was followed to determine wavelet parameters. At low gas velocities, the energy of macro-structures reduces with the addition of the first tube and then increases with the addition of a second tube. However, there is no notable difference at high gas velocities. Determinism is high for the bed without tubes, which can be attributed to the periodic behavior of bubbles. Determinism decreases with the addition of tubes because the breakage of bubbles results in less periodic behavior. The three methods of analysis used in this study captured the effects of immersed tubes on the hydrodynamics of fluidized beds. Recurrence quantitative analysis was found to be a powerful and easy-to-use method that can capture the nonlinear characteristics of fluidized beds much more quickly than conventional methods of nonlinear analysis. This method can thus be effectively used for the online monitoring of hydrodynamic changes in fluidized beds.
基金the bureau(area)forresearch and technology of Ferdowsi University of Mashhad and Mazandaran University,Babolsar,Iran
文摘Removing excessive free radicals (FRs) by a synthetic chemical might give a clue for treatment of many iron-mediated diseases. Deferoxamine (DFO) can be one of the chemicals of choice for the clue. To investigate photoredox properties of DFO, its quenching effect on superoxide radical (O2°), hydrogen peroxide (H202) and hydroxyl radical (OH~) was examined using luminol and ortho-phenanthroline (o- phen) chemiluminescence (CL) systems and UV-vis spectrophotometry. Stern-Volmer equation was also used for the CL kinetics. The observed quenching effect of DFO on CL]photon production in luminol and o-phen CL systems strongly confirmed the static arm of quenching properties of DFO on OH° and H2O2, but much less pronounced on O2^-°; the quenching property was maximal when iron was involved in the reaction systems. The Stern-Volmer plots in the designed photochemical reaction systems also confirmed a potent quenching effect of DFO on FR-mediated CL. Our study highlights strong photoreducing and antioxidant properties of DFO with huge quenching capacity on excessive FRs, and thus implies its promising prospects for therapeutic applications.