Problems involving coupled multiple space and time scales offer a real challenge for conventional frame-works of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk...Problems involving coupled multiple space and time scales offer a real challenge for conventional frame-works of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/ molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.展开更多
A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress ch...A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.展开更多
Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived ...Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived using the conservation and balance laws of continuum mechanics in conjunction with the corresponding kinematic assumptions. This is referred to as thermodynamic consistency of the mathematical models. Thermodynamic consistency ensures thermodynamic equilibrium during the evolution of the deformation. When the mathematical models are thermodynamically consistent, the second law of thermodynamics facilitates consistent derivations of constitutive theories in the presence of dissipation and memory mechanisms. This is the main motivation for the work presented in this paper. In the currently used mathematical models for plates/shells based on the assumed kinematic relations, energy functional is constructed over the volume consisting of kinetic energy, strain energy and the potential energy of the loads. The Euler’s equations derived from the first variation of the energy functional for arbitrary length when set to zero yield the mathematical model(s) for the deforming plates/shells. Alternatively, principle of virtual work can also be used to derive the same mathematical model(s). For linear elastic reversible deformation physics with small deformation and small strain, these two approaches, based on energy functional and the principle of virtual work, yield the same mathematical models. These mathematical models hold for reversible mechanical deformation. In this paper, we examine whether the currently used plate/shell mathematical models with the corresponding kinematic assumptions can be derived using the conservation and balance laws of classical or non-classical continuum mechanics. The mathematical models based on Kirchhoff hypothesis (classical plate theory, CPT) and first order shear deformation theory (FSDT) that are representative of most mathematical models for plates/shells are investigated in this paper for their thermodynamic consistency. This is followed by the details of a general and higher order thermodynamically consistent plate/shell thermoelastic mathematical model that is free of a priori consideration of kinematic assumptions and remains valid for very thin as well as thick plates/shells with comprehensive nonlinear constitutive theories based on integrity. Model problem studies are presented for small deformation behavior of linear elastic plates in the absence of thermal effects and the results are compared with CPT and FSDT mathematical models.展开更多
A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called "vacuum" of space. ...A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called "vacuum" of space. A space is an infinite continuum and its structure is determined by Riemannian geometry. Assuming that space is an infmite continuum, the pressure field derived from the geometrical structure of space is newly obtained by applying both continuum mechanics and General Relativity to space. A fundamental concept of space-time is described that focuses on theoretically innate properties of space including strain and curvature. As a trial consideration, gravity can be explained as a pressure field induced by the curvature of space.展开更多
This paper proposes a hybrid peridynamic and classical continuum mechanical model for the high-temperature damage and fracture analysis of concrete structures.In this model,we introduce the thermal expansion into peri...This paper proposes a hybrid peridynamic and classical continuum mechanical model for the high-temperature damage and fracture analysis of concrete structures.In this model,we introduce the thermal expansion into peridynamics and then couple it with the thermoelasticity based on the Morphing method.In addition,a thermomechanical constitutive model of peridynamic bond is presented inspired by the classic Mazars model for the quasi-brittle damage evolution of concrete structures under high-temperature conditions.The validity and effectiveness of the proposed model are verified through two-dimensional numerical examples,in which the influence of temperature on the damage behavior of concrete structures is investigated.Furthermore,the thermal effects on the fracture path of concrete structures are analyzed by numerical results.展开更多
This paper presents the ductility characterization for a medium carbon steel, for two microstructural conditions, that has been evaluated using the continuum damage mechanics theory, as proposed by Kachanov and develo...This paper presents the ductility characterization for a medium carbon steel, for two microstructural conditions, that has been evaluated using the continuum damage mechanics theory, as proposed by Kachanov and developed by Lemaitre. Tensile tests were carried out using loading-unloading cycles in order to capture the gradual deterioration of the elastic modulus, which may be linked to the ductile damage increase with increasing plastic strain. The mechanical parameters for the isotropic damage evolution equation were obtained and then used as inputs for a plasticity-damage coupled nu- merical algorithm, validated through numerical simulations of the experimental tensile tests. A comparison between the SAE 1050 steels studied and two carbon steel alloys (obtained from the literature), provided some basic understanding of the influence of the carbon level on the evolution of the damage parameters. An empiric relationship for this set of parameters, which can provide useful data for preliminary studies envisaging prediction of ductile failure in carbon steels, is also presented.展开更多
Based on continuum mechanics, we have developed a model for semi quantitative estimating effects of phase continuity on flow strength of two phase rocks including partially melted or crystallized rocks. Calculations o...Based on continuum mechanics, we have developed a model for semi quantitative estimating effects of phase continuity on flow strength of two phase rocks including partially melted or crystallized rocks. Calculations of the bulk flow strength of composite rocks as functions of the volume fraction, geometrical shape and continuity of the constitutive phases involve in numerically solving two non linear equations and thus are easy to be performed. The model has been justified by a good agreement between the predicted and measured results on diabase (64% clinopyroxene and 36% plagioclase) in the range of experimental temperatures and strain rates. It is believed that the present model could provide an approximate estimate for the rheological evolution of magmatic rocks during their life cycle of melting crystallization deformation.展开更多
The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroun...The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroundings.However,continuum robots possess theoretically infinite degrees of freedom,and this high flexibility usually leads to complex deformations when subjected to external forces and positional constraints.Describing these complex deformations is the main challenge in modeling continuum robots.In this study,we investigated a novel variable curvature modeling method for continuum robots,considering external forces and positional constraints.The robot configuration curve is described using the developed mechanical model,and then the robot is fitted to the curve.A ten-section continuum robot prototype with a length of 1 m was developed in order to validate the model.The feasibility and accuracy of the model were verified by the ability of the robot to reach target points and track complex trajectories with a load.This work was able to serve as a new perspective for the design analysis and motion control of continuum robots.展开更多
本文基于连续介质力学和理性扩展热力学分析流程,将L-S(Lord and Shulman)热弹性理论与声弹性理论相结合,建立L-S热声弹性理论的基本框架,包括运动学、力学与热力学、本构方程与演化方程、基本场方程四部分。在运动学部分,区分了Lagrang...本文基于连续介质力学和理性扩展热力学分析流程,将L-S(Lord and Shulman)热弹性理论与声弹性理论相结合,建立L-S热声弹性理论的基本框架,包括运动学、力学与热力学、本构方程与演化方程、基本场方程四部分。在运动学部分,区分了Lagrange描述和Euler描述,以及3种不同的状态和构形,同时针对热声弹性情况定义了两类从自然状态到初始状态的转变过程;在力学与热力学部分,给出了质量守恒定律、动量守恒定律、角动量守恒定律、能量守恒定律以及熵产不等式,从而引出经典不可逆热力学的局限性;在本构方程与演化方程部分,介绍了扩展不可逆热力学原理,并基于理性扩展热力学流程,推导了从自然状态到初始状态、从初始状态到最终状态的热声弹性本构方程与演化方程,将热流作为本构自变量并考虑了热流与应变和温度的相关性;在最后一部分给出了基本场方程的运动方程形式和适用于数值模拟的一阶速度-应力-热流-温度微分方程。展开更多
This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the me...This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.展开更多
A polarized beam of energy is usually interpreted as a set of particles, all having the same polarization state. Difference in behavior between the one and the other particle is then explained by a number of counter-i...A polarized beam of energy is usually interpreted as a set of particles, all having the same polarization state. Difference in behavior between the one and the other particle is then explained by a number of counter-intuitive quantum mechanical concepts like probability distribution, superposition, entanglement and quantized spin. Alternatively, I propose that a polarized beam is composed of a set of particles with a cosine distribution of polarization angles within a polarization area. I show that Malus’ law for the intensity of a beam of polarized light can be derived in a straightforward manner from this distribution. I then show that none of the above-mentioned counter-intuitive concepts are necessary to explain particle behavior and that the ontology of particles, passing through a polarizer, can be easily and intuitively understood. I conclude by formulating some questions for follow-up research.展开更多
This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncerta...This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncertainties associated with mechanical properties,loading,and boundary conditions.Failure in the composite material is truly hard to trace because there are individual faults in each ply,and we face a stochastic process due to the scatter in the mechanical properties.The continuum damage mechanics(CDM),as a powerful approach,is applied to model the damage of fiber,matrix,and fiber/matrix debonding.This method defines criteria for damage detection and determines safe zones.The material constitutive equations are executed using a subroutine inAbaqus.The first-order reliability method and second-order reliability method have been applied to examine the reliability of laminated composites.The results are compared with those of the Monte Carlo simulation.Different composite laminates under different stress levels are considered for the failure probability investigation.The limit state functions and random variables have been determined based on the CDM model.Finally,the effects of the number of cycles,applied stress,and stacking sequence of the laminate on the reliability and fatigue life in fiber-reinforced laminated composites are assessed.展开更多
Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discret...Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discrete dislocations. Atomistic dislocations nucleate from the crack tip and move to the continuum layer where they glide according to the dislocation dynamics curve.An atoms/continuum overlapping belt is devised to facilitate the transition between the two scales.The continuum constraint on the atomic assembly is imposed through the mechanics at- mosphere along the overlapping belt.Transmissions of mechanics parameters such as displacements,stresses,masses and momenta across the belt are realized.The present model allows us to explore interfacial fracture processes under different mode mixity.The effect of atomistic zigzag interface on the fracture process is revealed:it hinders dislocation emission from the crack tip,especially under high mode mixity.展开更多
基金the National Basic Research Program of China (2007CB814800)the National Natural Science Foundation of China (10432050,10572139,10721202,10772012,10772181,90715001)CAS Innovation Program (KJCX2-SW-L08,KJCX2-YW-M04)
文摘Problems involving coupled multiple space and time scales offer a real challenge for conventional frame-works of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/ molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.
基金supported by the National Natural Science Foundation of China(No.11002010)
文摘A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.
文摘Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived using the conservation and balance laws of continuum mechanics in conjunction with the corresponding kinematic assumptions. This is referred to as thermodynamic consistency of the mathematical models. Thermodynamic consistency ensures thermodynamic equilibrium during the evolution of the deformation. When the mathematical models are thermodynamically consistent, the second law of thermodynamics facilitates consistent derivations of constitutive theories in the presence of dissipation and memory mechanisms. This is the main motivation for the work presented in this paper. In the currently used mathematical models for plates/shells based on the assumed kinematic relations, energy functional is constructed over the volume consisting of kinetic energy, strain energy and the potential energy of the loads. The Euler’s equations derived from the first variation of the energy functional for arbitrary length when set to zero yield the mathematical model(s) for the deforming plates/shells. Alternatively, principle of virtual work can also be used to derive the same mathematical model(s). For linear elastic reversible deformation physics with small deformation and small strain, these two approaches, based on energy functional and the principle of virtual work, yield the same mathematical models. These mathematical models hold for reversible mechanical deformation. In this paper, we examine whether the currently used plate/shell mathematical models with the corresponding kinematic assumptions can be derived using the conservation and balance laws of classical or non-classical continuum mechanics. The mathematical models based on Kirchhoff hypothesis (classical plate theory, CPT) and first order shear deformation theory (FSDT) that are representative of most mathematical models for plates/shells are investigated in this paper for their thermodynamic consistency. This is followed by the details of a general and higher order thermodynamically consistent plate/shell thermoelastic mathematical model that is free of a priori consideration of kinematic assumptions and remains valid for very thin as well as thick plates/shells with comprehensive nonlinear constitutive theories based on integrity. Model problem studies are presented for small deformation behavior of linear elastic plates in the absence of thermal effects and the results are compared with CPT and FSDT mathematical models.
文摘A mechanical structure of space is suggested. On the supposition that a space as vacuum has a physical fine structure like continuum, it enables us to apply a continuum mechanics to the so-called "vacuum" of space. A space is an infinite continuum and its structure is determined by Riemannian geometry. Assuming that space is an infmite continuum, the pressure field derived from the geometrical structure of space is newly obtained by applying both continuum mechanics and General Relativity to space. A fundamental concept of space-time is described that focuses on theoretically innate properties of space including strain and curvature. As a trial consideration, gravity can be explained as a pressure field induced by the curvature of space.
基金the financial support received from the National Natural Science Foundation of China(11872016)National Key Laboratory of Shock Wave and Detonation Physics(JCKYS2021212003)+1 种基金Fundamental Research Funds for the Central Universities(DUT20LAB203)Key Research and Development Project of Liaoning Province(2020JH2/10500003).
文摘This paper proposes a hybrid peridynamic and classical continuum mechanical model for the high-temperature damage and fracture analysis of concrete structures.In this model,we introduce the thermal expansion into peridynamics and then couple it with the thermoelasticity based on the Morphing method.In addition,a thermomechanical constitutive model of peridynamic bond is presented inspired by the classic Mazars model for the quasi-brittle damage evolution of concrete structures under high-temperature conditions.The validity and effectiveness of the proposed model are verified through two-dimensional numerical examples,in which the influence of temperature on the damage behavior of concrete structures is investigated.Furthermore,the thermal effects on the fracture path of concrete structures are analyzed by numerical results.
基金The authors would like to thanks Brasmetal Waeholtz for providing the material samples for the tests GMSIE- POLI/USP for the tensile test machine and CAPES for the scholarship of SPT provided for the development of this study.
文摘This paper presents the ductility characterization for a medium carbon steel, for two microstructural conditions, that has been evaluated using the continuum damage mechanics theory, as proposed by Kachanov and developed by Lemaitre. Tensile tests were carried out using loading-unloading cycles in order to capture the gradual deterioration of the elastic modulus, which may be linked to the ductile damage increase with increasing plastic strain. The mechanical parameters for the isotropic damage evolution equation were obtained and then used as inputs for a plasticity-damage coupled nu- merical algorithm, validated through numerical simulations of the experimental tensile tests. A comparison between the SAE 1050 steels studied and two carbon steel alloys (obtained from the literature), provided some basic understanding of the influence of the carbon level on the evolution of the damage parameters. An empiric relationship for this set of parameters, which can provide useful data for preliminary studies envisaging prediction of ductile failure in carbon steels, is also presented.
文摘Based on continuum mechanics, we have developed a model for semi quantitative estimating effects of phase continuity on flow strength of two phase rocks including partially melted or crystallized rocks. Calculations of the bulk flow strength of composite rocks as functions of the volume fraction, geometrical shape and continuity of the constitutive phases involve in numerically solving two non linear equations and thus are easy to be performed. The model has been justified by a good agreement between the predicted and measured results on diabase (64% clinopyroxene and 36% plagioclase) in the range of experimental temperatures and strain rates. It is believed that the present model could provide an approximate estimate for the rheological evolution of magmatic rocks during their life cycle of melting crystallization deformation.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975566,61821005,U1908214)Key Research Program of Frontier Sciences,CAS,China(Grant No.ZDBS-LY-JSC011).
文摘The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroundings.However,continuum robots possess theoretically infinite degrees of freedom,and this high flexibility usually leads to complex deformations when subjected to external forces and positional constraints.Describing these complex deformations is the main challenge in modeling continuum robots.In this study,we investigated a novel variable curvature modeling method for continuum robots,considering external forces and positional constraints.The robot configuration curve is described using the developed mechanical model,and then the robot is fitted to the curve.A ten-section continuum robot prototype with a length of 1 m was developed in order to validate the model.The feasibility and accuracy of the model were verified by the ability of the robot to reach target points and track complex trajectories with a load.This work was able to serve as a new perspective for the design analysis and motion control of continuum robots.
文摘本文基于连续介质力学和理性扩展热力学分析流程,将L-S(Lord and Shulman)热弹性理论与声弹性理论相结合,建立L-S热声弹性理论的基本框架,包括运动学、力学与热力学、本构方程与演化方程、基本场方程四部分。在运动学部分,区分了Lagrange描述和Euler描述,以及3种不同的状态和构形,同时针对热声弹性情况定义了两类从自然状态到初始状态的转变过程;在力学与热力学部分,给出了质量守恒定律、动量守恒定律、角动量守恒定律、能量守恒定律以及熵产不等式,从而引出经典不可逆热力学的局限性;在本构方程与演化方程部分,介绍了扩展不可逆热力学原理,并基于理性扩展热力学流程,推导了从自然状态到初始状态、从初始状态到最终状态的热声弹性本构方程与演化方程,将热流作为本构自变量并考虑了热流与应变和温度的相关性;在最后一部分给出了基本场方程的运动方程形式和适用于数值模拟的一阶速度-应力-热流-温度微分方程。
文摘This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.
文摘A polarized beam of energy is usually interpreted as a set of particles, all having the same polarization state. Difference in behavior between the one and the other particle is then explained by a number of counter-intuitive quantum mechanical concepts like probability distribution, superposition, entanglement and quantized spin. Alternatively, I propose that a polarized beam is composed of a set of particles with a cosine distribution of polarization angles within a polarization area. I show that Malus’ law for the intensity of a beam of polarized light can be derived in a straightforward manner from this distribution. I then show that none of the above-mentioned counter-intuitive concepts are necessary to explain particle behavior and that the ontology of particles, passing through a polarizer, can be easily and intuitively understood. I conclude by formulating some questions for follow-up research.
文摘This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncertainties associated with mechanical properties,loading,and boundary conditions.Failure in the composite material is truly hard to trace because there are individual faults in each ply,and we face a stochastic process due to the scatter in the mechanical properties.The continuum damage mechanics(CDM),as a powerful approach,is applied to model the damage of fiber,matrix,and fiber/matrix debonding.This method defines criteria for damage detection and determines safe zones.The material constitutive equations are executed using a subroutine inAbaqus.The first-order reliability method and second-order reliability method have been applied to examine the reliability of laminated composites.The results are compared with those of the Monte Carlo simulation.Different composite laminates under different stress levels are considered for the failure probability investigation.The limit state functions and random variables have been determined based on the CDM model.Finally,the effects of the number of cycles,applied stress,and stacking sequence of the laminate on the reliability and fatigue life in fiber-reinforced laminated composites are assessed.
基金The project supported by the National Natural Science Foundation of China
文摘Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discrete dislocations. Atomistic dislocations nucleate from the crack tip and move to the continuum layer where they glide according to the dislocation dynamics curve.An atoms/continuum overlapping belt is devised to facilitate the transition between the two scales.The continuum constraint on the atomic assembly is imposed through the mechanics at- mosphere along the overlapping belt.Transmissions of mechanics parameters such as displacements,stresses,masses and momenta across the belt are realized.The present model allows us to explore interfacial fracture processes under different mode mixity.The effect of atomistic zigzag interface on the fracture process is revealed:it hinders dislocation emission from the crack tip,especially under high mode mixity.