Chlorophyll fluorescence parameters such as Fv/Fm, NPQ and ΦII (YII) are widely used to estimate the fitness and photosynthetic activity of plant leaves and non-photochemical dissipation of excessive excitation energ...Chlorophyll fluorescence parameters such as Fv/Fm, NPQ and ΦII (YII) are widely used to estimate the fitness and photosynthetic activity of plant leaves and non-photochemical dissipation of excessive excitation energy in photosystem II. The effect of chloroplast movement on these fluorescence parameters reduces the accuracy of estimations of the size of de-excitation processes, but there is no method to calculate correct parameters from altered (fluctuated) parameters. Chloroplast movement was recently identified as the “middle” kinetic component of NPQ. In this paper, we devised a complex but reasonable mathematical method to remove the effect of chloroplast movement on fluorescence parameters, based on our previously reported fluorescence theory. The fraction of “S fluctuation” (designated as σ) was estimated from fluorescence observations and used to calculate the non-fluctuated Fs and F′m. fluorescence yields. From the σ values, the fractional change of light absorbance by a leaf caused by chloroplast movement was estimated at 70% - 100%, which varied according to the experimental conditions and plant species. The effect of photoinhibition on fluorescence parameters was also examined in this paper. The photochemical and non-photochemical de-excitation sizes during photoinhibition (measured by the parameters qPI and qSlow) changed on a single regression line. Using this correlation, qPI and qSlow can be predicted from Fv/Fm, and the non-fluctuated Fm and Fo values can be estimated from the fluctuated F″m and F″o values.展开更多
Under natural conditions,photosynthesis has to be adjusted to fluctuating light intensities.Leaves exposed to high light dissipate excess light energy in form of heat at photosystem II(PSII)by a process called non-pho...Under natural conditions,photosynthesis has to be adjusted to fluctuating light intensities.Leaves exposed to high light dissipate excess light energy in form of heat at photosystem II(PSII)by a process called non-photochemical quenching(NPQ).Upon fast transition from light to shade,plants lose light energy by a relatively slow relaxation from photoprotection.Combined overexpression of violaxanthin de-epoxidase(VDE),PSII subunit S(PsbS)and zeaxanthin epoxidase(ZEP)in tobacco accelerates relaxation from photoprotection,and increases photosynthetic productivity.In Arabidopsis,expression of the same three genes(VPZ)resulted in a more rapid photoprotection but growth of the transgenic plants was impaired.Here we report on VPZ expressing potato plants grown under various light regimes.Similar to tobacco and Arabidopsis,induction and relaxation of NPQ was accelerated under all growth conditions tested,but did not cause an overall increased photosynthetic rate or growth of transgenic plants.Tuber yield of VPZ expressing plants was unaltered as compared to control plants under constant light conditions and even decreased under fluctuating light conditions.Under control conditions,levels of the phytohormone abscisic acid(ABA)were found to be elevated,indicating an increased violaxanthin availability in VPZ plants.However,the increased basal ABA levels did not improve drought tolerance of VPZ transgenic potato plants under greenhouse conditions.The failure to benefit from improved photoprotection is most likely caused by a reduced radiation use efficiency under high light conditions resulting from a too strong NPQ induction.Mitigating this negative effect in the future might help to improve photosynthetic performance in VPZ expressing potato plants.展开更多
A high non-photochemical quenching(NPQ) appeared below the phase transition temperature when Microcystis aeruginosa PCC7806 cells were exposed to saturated light for a short time.This suggested that a component of NPQ...A high non-photochemical quenching(NPQ) appeared below the phase transition temperature when Microcystis aeruginosa PCC7806 cells were exposed to saturated light for a short time.This suggested that a component of NPQ,independent from state transition or photo-inhibition,had been generated in the PSII complex;this was a fast component responding to high intensity light.Glutaraldehyde(GA),commonly used to stabilize membrane protein conformations,resulted in more energy transfer to PSII reaction centers,affecting the energy absorption and dissipation process rather than the transfer process of phycobilisome(PBS).In comparison experiments with and without GA,the rapid light curves(RLCs) and fluorescence induction dynamics of the fast phase showed that excess excitation energy was dissipated by conformational change in the photosynthetic pigment proteins on the thylakoid membrane(PPPTM).Based on deconvolution of NPQ relaxation kinetics,we concluded that the fast quenching component(NPQ f) was closely related to PPPTM conformational change,as it accounted for as much as 39.42% of the total NPQ.We hypothesize therefore,that NPQ f induced by PPPTM conformation is an important adaptation mechanism for Microcystis blooms under high-intensity light during summer and autumn.展开更多
The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array ...The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.展开更多
In this paper,since the Avalanche Photo Diode(APD)for Light-to-Voltage LTV conversion uses a high voltage in the operating range unlike other Photo Diodes(PD),the quenching resistor must be connected in series to prev...In this paper,since the Avalanche Photo Diode(APD)for Light-to-Voltage LTV conversion uses a high voltage in the operating range unlike other Photo Diodes(PD),the quenching resistor must be connected in series to prevent overcurrent when using the Transimpedance Amplifier(TIA).In such a case,quenching resistance may affect the transfer function of the TIA circuit,resulting in serious stability.Therefore,in this paper,by analyzing the effect of APD quenching resistance on the voltage and current loop transfer function of TIA,we proposed a loop analysis and a method for determining the quenching resistance value to improve stability.A TIA circuit with quenching resistance was designed by the proposed method and its operational stability was verified through simulation and chip fabrication.展开更多
Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more tha...Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more than half a year of on-site practice,the changes in the hot forming of spring plates before free quenching have been explored,and finally a heat treatment process that meets the production requirements of our company has been developed,achieving normal production.展开更多
Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-ro...Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-road vehicles,and warships.This paper presents a comparative study using water,Brine solution,and SAE 40 oil as the quenching media in regular bronze(Cu-6Sn)and spinodal bronze(Cu-9Ni-6Sn)alloys.Morphological analysis was conducted by optical microscopy,transmission electron microscopy(TEM),and X-ray diffraction technique(XRD)on bronze and spinodal bronze samples immersed in the three different quenching media to understand the grain size and hardness values better.Tribological analysis was performed to analyze the effect of quenching media on the wear aspects of bronze and spinodal bronze samples.The hardness value of the brine-aged spinodal bronze samples was as high as 320 Hv,and the grain size was very low in the range of 60μm.A quantitative comparison between brine-aged regular bronze and brine-aged spinodal bronze showed that the hardness(Hv)was almost 80%higher for brine-aged spinodal bronze.Further,the grain size was approximately 30%finer for spinodal bronze when compared with regular bronze.When the load was increased in spinodal bronze samples,there was an initial dip in wear rate followed by a marginal increase.There was a steady increase in friction coefficient with a rise in load for brine-aged regular bronze and spinodal bronze samples.These results indicate that brine solution is the most effective quenching medium for cast Cu-Ni-Sn spinodal alloys.展开更多
Bainite microstructures have become increasingly attractive for the development of advanced high-strength steel owing to their balanced strength-plasticity properties.In this study, the final microstructure and mechan...Bainite microstructures have become increasingly attractive for the development of advanced high-strength steel owing to their balanced strength-plasticity properties.In this study, the final microstructure and mechanical properties of a quenching and partitioning(QP) steel sample after two distinct QP processes were analyzed.The results reveal that martensite transformation after quenching resulted in a lathed morphology with higher yield strength and hole expansion ratio.In contrast, bainite transformation after quenching resulted in the formation of a blocky microstructure composed of bainitic ferrite retained austenite and nanoscale precipitates during the subsequent phase transformation at a higher temperature.This kind of final microstructure is beneficial to the elongation of QP steel but detrimental to the hole expansion ratio.展开更多
Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under indust...Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under industrial production conditions,which leads to an asymmetric residual stress distribution.The spray quenching treatment was conducted on self-designed spray equipment,and the residual stress along the thickness direction was measured by a layer removal method based on deflections.Under the asymmetric spray quenching condition,the subsurface stress of the high-flow rate surface was lower than that of the low-flow rate surface,and the difference between the two subsurface stresses increased with the increase in the difference in water flow rates.The subsurface stress underneath the surface with a water flow rate of 0.60 m^(3)/h was 15.38 MPa less than that of 0.15 m^(3)/h.The simulated residual stress by finite element(FE)method of the high heat transfer coefficient(HTC)surface was less than that of the low HTC surface,which is consistent with the experimental results.The FE model can be used to analyze the strain and stress evolution and predict the quenched stress magnitude and distribution.展开更多
The novel martensitic heat-resistant steel G115 was designed for thick-section boiler components of ultra-supercritical(USC) power plants at 630-650 ℃.The impact of the quenching and tempering processes on the proper...The novel martensitic heat-resistant steel G115 was designed for thick-section boiler components of ultra-supercritical(USC) power plants at 630-650 ℃.The impact of the quenching and tempering processes on the properties and microstructure of G115 steel was explored.The samples that were quenched and tempered twice had a higher tensile strength at room temperature and 650 ℃,and the impact energy was significantly improved.The strength and impact energy increased in proportion to the increase in the first quenching temperature.The microstructure differences between the single and double quenched and tempered samples were examined using metallographic microscopy and scanning electron microscopy.The grain size of the double quenched and tempered samples was finer than that of the single quenched and tempered samples, and the tempered martensite lath is more visible, as are the carbides and other precipitates, which are finer and more uniformly distributed.As the first quenching temperature increased, the grains became coarser but more uniform.展开更多
Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)...Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)as raw materials,and calcium lignosulfonate as the additive,batching,mixing,and molding on a vibration pressure molding machine,drying and then firing at 1420℃for 10 h in high-purity N2.The apparent porosity,the bulk density,the cold modulus of rupture,the hot modulus of rupture,and the linear expansion coefficient of the samples were tested.The phase composition and the microstructure of the samples at different nitriding depths(50,100,and 150 mm)were analyzed by XRD and SEM.The field application effects of the blocks were studied.The results show that:(1)the multi-phase nitrides bonded silicon carbide refractories can dynamically adjust their own phase composition and minimize structural and thermal stresses,improving the service life of key parts of dry quenching furnaces;(2)calcium lignosulfonate can improve the nitriding micro-environment of multi-phase nitrides bonded silicon carbide lintel blocks,successfully increasing the effective nitriding thickness of the blocks to 300 mm;(3)Sinosteel LI RR provides a unique concept in the design of materials and block types as well as the stable and scientific overall structure,promoting the industrialization process of dry quenching furnaces with long service life in China.展开更多
Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce da...Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce dark solitons in a one-dimensional atomic Bose–Einstein condensate(BEC)by quenching inter-atomic interaction.Motivated by this work,we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics.For an isotropic disk trap with a hard-wall boundary,we find that successive inward-moving ring dark solitons(RDSs)can be induced from the edge,and the number of RDSs can be controlled by tuning the ratio of the after-and before-quench interaction strength across different critical values.The role of the quench played on the profiles of the density,phase,and sound velocity is also investigated.Due to the snake instability,the RDSs then become vortex–antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction.By tuning the geometry of the box traps,demonstrated as polygonal ones,more subtle dynamics of solitons and vortices are enabled.Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments.展开更多
The vapor film collapse that occurs in the quenching process is complicated and affects the heat treatment quality and its distortion.In order to incorporate it into the MBD(Model Based Development)technology required...The vapor film collapse that occurs in the quenching process is complicated and affects the heat treatment quality and its distortion.In order to incorporate it into the MBD(Model Based Development)technology required these days,it is necessary to predict the quality of heat treatment by CAE(Computer Added Engineering),shorten the product development period.The calculation of the vapor film collapses in a simple and practical time in order to improve the product performance.However,in the past,in order to formulate the vapor film collapse on a simulation,it was necessary to perform a very large amount of computational calculation CFD(computational fluid dynamics),which was a problem in terms of computer resources and the model of vapor film collapse.In addition,this phenomenon has a complexity behavior of the phenomenon in iterative processing,which also complicates the calculation.In this study,the vapor film collapse phenomenon is easily visualized using self-organized cellular automaton simulation which includes the phenomena of“vapor film thickness and its fluctuation”,“flow disturbance”,“surface step of workpiece”,and“decrease of cooling due to r shape of surface”.The average cooling state and repeated fluctuations of the cooling state were reproduced by this method.展开更多
High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of th...High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.展开更多
The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quench...The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.展开更多
Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical exa...Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.展开更多
The mechanism of nitrocompounds quenching of the fluorescence of 5, 5′ dipheny1 2, 2′ bisoxazole (POOP) and trans 1, 2 bis [2 (5 phenyloxazolyl)] ethene (POEOP) has been studied. It was found that the fluores...The mechanism of nitrocompounds quenching of the fluorescence of 5, 5′ dipheny1 2, 2′ bisoxazole (POOP) and trans 1, 2 bis [2 (5 phenyloxazolyl)] ethene (POEOP) has been studied. It was found that the fluorescence of oxazoles was quenched mainly by the absorption competition and radiationless energy transfer of nitrocompounds. The fluorescence quenching rate constants of nitrobenzene and nitromethane are 3.0×10 10 L·mol -1 ·s -1 and 1.5×10 8 L·mol -1 ·s -1 respectively for POEOP. This remarkable difference was explicated.展开更多
文摘Chlorophyll fluorescence parameters such as Fv/Fm, NPQ and ΦII (YII) are widely used to estimate the fitness and photosynthetic activity of plant leaves and non-photochemical dissipation of excessive excitation energy in photosystem II. The effect of chloroplast movement on these fluorescence parameters reduces the accuracy of estimations of the size of de-excitation processes, but there is no method to calculate correct parameters from altered (fluctuated) parameters. Chloroplast movement was recently identified as the “middle” kinetic component of NPQ. In this paper, we devised a complex but reasonable mathematical method to remove the effect of chloroplast movement on fluorescence parameters, based on our previously reported fluorescence theory. The fraction of “S fluctuation” (designated as σ) was estimated from fluorescence observations and used to calculate the non-fluctuated Fs and F′m. fluorescence yields. From the σ values, the fractional change of light absorbance by a leaf caused by chloroplast movement was estimated at 70% - 100%, which varied according to the experimental conditions and plant species. The effect of photoinhibition on fluorescence parameters was also examined in this paper. The photochemical and non-photochemical de-excitation sizes during photoinhibition (measured by the parameters qPI and qSlow) changed on a single regression line. Using this correlation, qPI and qSlow can be predicted from Fv/Fm, and the non-fluctuated Fm and Fo values can be estimated from the fluctuated F″m and F″o values.
基金supported by EU Horizon-2020 project Photoboost(862127)(GGL,US)。
文摘Under natural conditions,photosynthesis has to be adjusted to fluctuating light intensities.Leaves exposed to high light dissipate excess light energy in form of heat at photosystem II(PSII)by a process called non-photochemical quenching(NPQ).Upon fast transition from light to shade,plants lose light energy by a relatively slow relaxation from photoprotection.Combined overexpression of violaxanthin de-epoxidase(VDE),PSII subunit S(PsbS)and zeaxanthin epoxidase(ZEP)in tobacco accelerates relaxation from photoprotection,and increases photosynthetic productivity.In Arabidopsis,expression of the same three genes(VPZ)resulted in a more rapid photoprotection but growth of the transgenic plants was impaired.Here we report on VPZ expressing potato plants grown under various light regimes.Similar to tobacco and Arabidopsis,induction and relaxation of NPQ was accelerated under all growth conditions tested,but did not cause an overall increased photosynthetic rate or growth of transgenic plants.Tuber yield of VPZ expressing plants was unaltered as compared to control plants under constant light conditions and even decreased under fluctuating light conditions.Under control conditions,levels of the phytohormone abscisic acid(ABA)were found to be elevated,indicating an increased violaxanthin availability in VPZ plants.However,the increased basal ABA levels did not improve drought tolerance of VPZ transgenic potato plants under greenhouse conditions.The failure to benefit from improved photoprotection is most likely caused by a reduced radiation use efficiency under high light conditions resulting from a too strong NPQ induction.Mitigating this negative effect in the future might help to improve photosynthetic performance in VPZ expressing potato plants.
基金supported by the National Basic Research Program of China(Grant No. 2008CB418002)the National Major Programs of Water Body Pollution Control and Remediation (Grant Nos. 2009ZX07104-005 and 2009ZX07106-001)
文摘A high non-photochemical quenching(NPQ) appeared below the phase transition temperature when Microcystis aeruginosa PCC7806 cells were exposed to saturated light for a short time.This suggested that a component of NPQ,independent from state transition or photo-inhibition,had been generated in the PSII complex;this was a fast component responding to high intensity light.Glutaraldehyde(GA),commonly used to stabilize membrane protein conformations,resulted in more energy transfer to PSII reaction centers,affecting the energy absorption and dissipation process rather than the transfer process of phycobilisome(PBS).In comparison experiments with and without GA,the rapid light curves(RLCs) and fluorescence induction dynamics of the fast phase showed that excess excitation energy was dissipated by conformational change in the photosynthetic pigment proteins on the thylakoid membrane(PPPTM).Based on deconvolution of NPQ relaxation kinetics,we concluded that the fast quenching component(NPQ f) was closely related to PPPTM conformational change,as it accounted for as much as 39.42% of the total NPQ.We hypothesize therefore,that NPQ f induced by PPPTM conformation is an important adaptation mechanism for Microcystis blooms under high-intensity light during summer and autumn.
基金Kut Technical Institute for their funding supports。
文摘The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.
文摘In this paper,since the Avalanche Photo Diode(APD)for Light-to-Voltage LTV conversion uses a high voltage in the operating range unlike other Photo Diodes(PD),the quenching resistor must be connected in series to prevent overcurrent when using the Transimpedance Amplifier(TIA).In such a case,quenching resistance may affect the transfer function of the TIA circuit,resulting in serious stability.Therefore,in this paper,by analyzing the effect of APD quenching resistance on the voltage and current loop transfer function of TIA,we proposed a loop analysis and a method for determining the quenching resistance value to improve stability.A TIA circuit with quenching resistance was designed by the proposed method and its operational stability was verified through simulation and chip fabrication.
文摘Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more than half a year of on-site practice,the changes in the hot forming of spring plates before free quenching have been explored,and finally a heat treatment process that meets the production requirements of our company has been developed,achieving normal production.
文摘Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-road vehicles,and warships.This paper presents a comparative study using water,Brine solution,and SAE 40 oil as the quenching media in regular bronze(Cu-6Sn)and spinodal bronze(Cu-9Ni-6Sn)alloys.Morphological analysis was conducted by optical microscopy,transmission electron microscopy(TEM),and X-ray diffraction technique(XRD)on bronze and spinodal bronze samples immersed in the three different quenching media to understand the grain size and hardness values better.Tribological analysis was performed to analyze the effect of quenching media on the wear aspects of bronze and spinodal bronze samples.The hardness value of the brine-aged spinodal bronze samples was as high as 320 Hv,and the grain size was very low in the range of 60μm.A quantitative comparison between brine-aged regular bronze and brine-aged spinodal bronze showed that the hardness(Hv)was almost 80%higher for brine-aged spinodal bronze.Further,the grain size was approximately 30%finer for spinodal bronze when compared with regular bronze.When the load was increased in spinodal bronze samples,there was an initial dip in wear rate followed by a marginal increase.There was a steady increase in friction coefficient with a rise in load for brine-aged regular bronze and spinodal bronze samples.These results indicate that brine solution is the most effective quenching medium for cast Cu-Ni-Sn spinodal alloys.
文摘Bainite microstructures have become increasingly attractive for the development of advanced high-strength steel owing to their balanced strength-plasticity properties.In this study, the final microstructure and mechanical properties of a quenching and partitioning(QP) steel sample after two distinct QP processes were analyzed.The results reveal that martensite transformation after quenching resulted in a lathed morphology with higher yield strength and hole expansion ratio.In contrast, bainite transformation after quenching resulted in the formation of a blocky microstructure composed of bainitic ferrite retained austenite and nanoscale precipitates during the subsequent phase transformation at a higher temperature.This kind of final microstructure is beneficial to the elongation of QP steel but detrimental to the hole expansion ratio.
基金financially supported by the National Key Research and Development Program of China(No.2020YFF0218200)。
文摘Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under industrial production conditions,which leads to an asymmetric residual stress distribution.The spray quenching treatment was conducted on self-designed spray equipment,and the residual stress along the thickness direction was measured by a layer removal method based on deflections.Under the asymmetric spray quenching condition,the subsurface stress of the high-flow rate surface was lower than that of the low-flow rate surface,and the difference between the two subsurface stresses increased with the increase in the difference in water flow rates.The subsurface stress underneath the surface with a water flow rate of 0.60 m^(3)/h was 15.38 MPa less than that of 0.15 m^(3)/h.The simulated residual stress by finite element(FE)method of the high heat transfer coefficient(HTC)surface was less than that of the low HTC surface,which is consistent with the experimental results.The FE model can be used to analyze the strain and stress evolution and predict the quenched stress magnitude and distribution.
文摘The novel martensitic heat-resistant steel G115 was designed for thick-section boiler components of ultra-supercritical(USC) power plants at 630-650 ℃.The impact of the quenching and tempering processes on the properties and microstructure of G115 steel was explored.The samples that were quenched and tempered twice had a higher tensile strength at room temperature and 650 ℃,and the impact energy was significantly improved.The strength and impact energy increased in proportion to the increase in the first quenching temperature.The microstructure differences between the single and double quenched and tempered samples were examined using metallographic microscopy and scanning electron microscopy.The grain size of the double quenched and tempered samples was finer than that of the single quenched and tempered samples, and the tempered martensite lath is more visible, as are the carbides and other precipitates, which are finer and more uniformly distributed.As the first quenching temperature increased, the grains became coarser but more uniform.
文摘Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)as raw materials,and calcium lignosulfonate as the additive,batching,mixing,and molding on a vibration pressure molding machine,drying and then firing at 1420℃for 10 h in high-purity N2.The apparent porosity,the bulk density,the cold modulus of rupture,the hot modulus of rupture,and the linear expansion coefficient of the samples were tested.The phase composition and the microstructure of the samples at different nitriding depths(50,100,and 150 mm)were analyzed by XRD and SEM.The field application effects of the blocks were studied.The results show that:(1)the multi-phase nitrides bonded silicon carbide refractories can dynamically adjust their own phase composition and minimize structural and thermal stresses,improving the service life of key parts of dry quenching furnaces;(2)calcium lignosulfonate can improve the nitriding micro-environment of multi-phase nitrides bonded silicon carbide lintel blocks,successfully increasing the effective nitriding thickness of the blocks to 300 mm;(3)Sinosteel LI RR provides a unique concept in the design of materials and block types as well as the stable and scientific overall structure,promoting the industrialization process of dry quenching furnaces with long service life in China.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LQ22A040006,LY21A040004,LR22A040001,and LZ21A040001)the National Natural Science Foundation of China(Grant Nos.11835011 and 12074342).
文摘Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce dark solitons in a one-dimensional atomic Bose–Einstein condensate(BEC)by quenching inter-atomic interaction.Motivated by this work,we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics.For an isotropic disk trap with a hard-wall boundary,we find that successive inward-moving ring dark solitons(RDSs)can be induced from the edge,and the number of RDSs can be controlled by tuning the ratio of the after-and before-quench interaction strength across different critical values.The role of the quench played on the profiles of the density,phase,and sound velocity is also investigated.Due to the snake instability,the RDSs then become vortex–antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction.By tuning the geometry of the box traps,demonstrated as polygonal ones,more subtle dynamics of solitons and vortices are enabled.Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments.
文摘The vapor film collapse that occurs in the quenching process is complicated and affects the heat treatment quality and its distortion.In order to incorporate it into the MBD(Model Based Development)technology required these days,it is necessary to predict the quality of heat treatment by CAE(Computer Added Engineering),shorten the product development period.The calculation of the vapor film collapses in a simple and practical time in order to improve the product performance.However,in the past,in order to formulate the vapor film collapse on a simulation,it was necessary to perform a very large amount of computational calculation CFD(computational fluid dynamics),which was a problem in terms of computer resources and the model of vapor film collapse.In addition,this phenomenon has a complexity behavior of the phenomenon in iterative processing,which also complicates the calculation.In this study,the vapor film collapse phenomenon is easily visualized using self-organized cellular automaton simulation which includes the phenomena of“vapor film thickness and its fluctuation”,“flow disturbance”,“surface step of workpiece”,and“decrease of cooling due to r shape of surface”.The average cooling state and repeated fluctuations of the cooling state were reproduced by this method.
基金Project supported by the National Natural Science Foundation of China(Nos.12302278,U2241267,12172155,and 11932008)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-48)the Natural Science Foundation of Gansu Province of China(No.24JRRA473)。
文摘High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.
基金Project(zzyjkt2013-10B)supported by the Foundation of State Key Laboratory of High-performance&Complicated Manufacturing,ChinaProject(51275533)supported by the National Natural Science Foundation of China
文摘The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.
文摘Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.
文摘The mechanism of nitrocompounds quenching of the fluorescence of 5, 5′ dipheny1 2, 2′ bisoxazole (POOP) and trans 1, 2 bis [2 (5 phenyloxazolyl)] ethene (POEOP) has been studied. It was found that the fluorescence of oxazoles was quenched mainly by the absorption competition and radiationless energy transfer of nitrocompounds. The fluorescence quenching rate constants of nitrobenzene and nitromethane are 3.0×10 10 L·mol -1 ·s -1 and 1.5×10 8 L·mol -1 ·s -1 respectively for POEOP. This remarkable difference was explicated.