Quantum Fisher information(QFI)associated with local metrology has been used to parameter estimation in open quantum systems.In this work,we calculated the QFI for a moving Unruh-DeWitt detector coupled with massless ...Quantum Fisher information(QFI)associated with local metrology has been used to parameter estimation in open quantum systems.In this work,we calculated the QFI for a moving Unruh-DeWitt detector coupled with massless scalar fields in n-dimensional spacetime,and analyzed the behavior of QFI with various parameters,such as the dimension of spacetime,evolution time,and Unruh temperature.We discovered that the QFI of state parameter decreases monotonically from 1 to 0 over time.Additionally,we noted that the QFI for small evolution times is several orders of magnitude higher than the QFI for long evolution times.We also found that the value of QFI decreases at first and then stabilizes as the Unruh temperature increases.It was observed that the QFI depends on initial state parameterθ,and Fθis the maximum forθ=0 orθ=π,Fφis the maximum forθ=π/2.We also obtain that the maximum value of QFI for state parameters varies for different spacetime dimensions with the same evolution time.展开更多
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ...The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.展开更多
Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,...Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.展开更多
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to...In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.展开更多
The application of traditional synchronous measurement methods is limited by frequent fluctuations of electrical signals and complex frequency components in distribution networks.Therefore,it is critical to find solut...The application of traditional synchronous measurement methods is limited by frequent fluctuations of electrical signals and complex frequency components in distribution networks.Therefore,it is critical to find solutions to the issues of multifrequency parameter estimation and synchronous measurement estimation accuracy in the complex environment of distribution networks.By utilizing the multifrequency sensing capabilities of discrete Fourier transform signals and Taylor series for dynamic signal processing,a multifrequency signal estimation approach based on HT-IpDFT-STWLS(HIpST)for distribution networks is provided.First,by introducing the Hilbert transform(HT),the influence of noise on the estimation algorithm is reduced.Second,signal frequency components are obtained on the basis of the calculated signal envelope spectrum,and the interpolated discrete Fourier transform(IpDFT)frequency coarse estimation results are used as the initial values of symmetric Taylor weighted least squares(STWLS)to achieve high-precision parameter estimation under the dynamic changes of the signal,and the method increases the number of discrete Fourier.Third,the accuracy of this proposed method is verified by simulation analysis.Data show that this proposed method can accurately achieve the parameter estimation of multifrequency signals in distribution networks.This approach provides a solution for the application of phasor measurement units in distribution networks.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
This study addresses the problem of parameter estimation for a one-dimensional reaction-diffusion equation, involving both unknown domain parameters and unknown boundary parameters. The proposed approach utilizes the ...This study addresses the problem of parameter estimation for a one-dimensional reaction-diffusion equation, involving both unknown domain parameters and unknown boundary parameters. The proposed approach utilizes the least-squares method to design an adaptive law for parameter estimation. The convergence analysis demonstrates that under persistent excitation conditions, the adaptive law converges exponentially to zero, indicating that the estimated parameters converge exponentially to their true values. Numerical simulations confirm the effectiveness. Furthermore, it is shown that within a certain range of the reaction coefficient, the auxiliary system acts as a state observer, providing an accurate estimate of the system state at an exponential rate. .展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv...To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.展开更多
In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propa...In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).展开更多
The angular resolution of radar is of crucial signifi-cance to its tracking performance.In this paper,a super-resolu-tion parameter estimation algorithm based on wide-narrowband joint processing is proposed to improve...The angular resolution of radar is of crucial signifi-cance to its tracking performance.In this paper,a super-resolu-tion parameter estimation algorithm based on wide-narrowband joint processing is proposed to improve the angular resolution of wideband monopulse radar.The range cells containing resolv-able scattering points are detected in the wideband mode,and these range cells are adopted to estimate part of the target parameters by algorithms of low computational requirement.Then,the likelihood function of the echo is constructed in the narrow-band mode to estimate the rest of the parameters,and the parameters estimated in the wideband mode are employed to reduce computation and enhance estimation accuracy.Simu-lation results demonstrate that the proposed algorithm has higher estimation accuracy and lower computational complexity than the current algorithm and can avoid the risk of model mis-match.展开更多
Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced...Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.展开更多
In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter e...In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.展开更多
Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of severa...Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.展开更多
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro...Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.展开更多
The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high...The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.展开更多
Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a p...Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.展开更多
Extremely large-scale hybrid reconfigurable intelligence surface(XL-HRIS),an improved version of the RIS,can receive the incident signal and enhance communication performance.However,as the RIS size increases,the phas...Extremely large-scale hybrid reconfigurable intelligence surface(XL-HRIS),an improved version of the RIS,can receive the incident signal and enhance communication performance.However,as the RIS size increases,the phase variations of the received signal across the whole array are nonnegligible in the near-field region,and the channel model mismatch,which will decrease the estimation accuracy,must be considered.In this paper,the lower bound(LB)of the estimated parameter is studied and the impacts of the distance and signal-tonoise ratio(SNR)on LB are then evaluated.Moreover,the impacts of the array scale on LB and spectral efficiency(SE)are also studied.Simulation results verify that even in extremely large-scale array systems with infinite SNR,channel model mismatch can still limit estimation accuracy.However,this impact decreases with increasing distance.展开更多
With the development of precision agriculture, the research that applies Remote Sensing technology, especially hyperspectral remote sensing, to realize crop management, monitoring and yield estimation, has been concer...With the development of precision agriculture, the research that applies Remote Sensing technology, especially hyperspectral remote sensing, to realize crop management, monitoring and yield estimation, has been concerned. Nowadays, the growth-monitoring and yield-estimating methods in rice, wheat and other annual crops develop rapidly with some achievements having already been put into service. But the yield estimation research on perennial economic crops is few. Taking peren- nial citrus trees as the research object, using ASD spectrometer to collect citrus canopy spectral, this article studied and analyzed the citrus of veget&tion index and its relationship on yield, synthetically considered the influence of the agriculture pa- rameters on crop yield, and finally constructed the citrus yield estimation model based on the spectral data and agronomic parameters. Through the Significance Test and Samples' Test, olutained that the model's fitting degree was R=0.631, F= 13.201, P〈0.01 and the error rate of estimating accuracy was controlled in the range 3%-16%, proving that the model has statistical signification and reliability. It concluded that hyperspectral acquired from citrus canopy has substantial potential for citrus yield estimation. This study is an application and exploration of Hyperspectral Remote Sensing technology in the citrus yield estimation.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12105097 and 12035005)the Science Research Fund of the Education Department of Hunan Province,China(Grant No.23B0480).
文摘Quantum Fisher information(QFI)associated with local metrology has been used to parameter estimation in open quantum systems.In this work,we calculated the QFI for a moving Unruh-DeWitt detector coupled with massless scalar fields in n-dimensional spacetime,and analyzed the behavior of QFI with various parameters,such as the dimension of spacetime,evolution time,and Unruh temperature.We discovered that the QFI of state parameter decreases monotonically from 1 to 0 over time.Additionally,we noted that the QFI for small evolution times is several orders of magnitude higher than the QFI for long evolution times.We also found that the value of QFI decreases at first and then stabilizes as the Unruh temperature increases.It was observed that the QFI depends on initial state parameterθ,and Fθis the maximum forθ=0 orθ=π,Fφis the maximum forθ=π/2.We also obtain that the maximum value of QFI for state parameters varies for different spacetime dimensions with the same evolution time.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901,2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495,51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2021-A1515012286)Science and Technology Plan Project of Fuzhou City of China(Grant No.2022-P-022).
文摘The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund,Contract No.CNNC-LCKY-202234)the Project of the Nuclear Power Technology Innovation Center of Science Technology and Industry(No.HDLCXZX-2023-HD-039-02)。
文摘Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.
基金supported by the National Natural Science Foundation of China(6193101562071335)+1 种基金the Technological Innovation Project of Hubei Province of China(2019AAA061)the Natural Science F oundation of Hubei Province of China(2021CFA002)。
文摘In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.
基金supported by the State Grid Corporation of China Headquarters Management Science and Technology Project(No.526620200008).
文摘The application of traditional synchronous measurement methods is limited by frequent fluctuations of electrical signals and complex frequency components in distribution networks.Therefore,it is critical to find solutions to the issues of multifrequency parameter estimation and synchronous measurement estimation accuracy in the complex environment of distribution networks.By utilizing the multifrequency sensing capabilities of discrete Fourier transform signals and Taylor series for dynamic signal processing,a multifrequency signal estimation approach based on HT-IpDFT-STWLS(HIpST)for distribution networks is provided.First,by introducing the Hilbert transform(HT),the influence of noise on the estimation algorithm is reduced.Second,signal frequency components are obtained on the basis of the calculated signal envelope spectrum,and the interpolated discrete Fourier transform(IpDFT)frequency coarse estimation results are used as the initial values of symmetric Taylor weighted least squares(STWLS)to achieve high-precision parameter estimation under the dynamic changes of the signal,and the method increases the number of discrete Fourier.Third,the accuracy of this proposed method is verified by simulation analysis.Data show that this proposed method can accurately achieve the parameter estimation of multifrequency signals in distribution networks.This approach provides a solution for the application of phasor measurement units in distribution networks.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘This study addresses the problem of parameter estimation for a one-dimensional reaction-diffusion equation, involving both unknown domain parameters and unknown boundary parameters. The proposed approach utilizes the least-squares method to design an adaptive law for parameter estimation. The convergence analysis demonstrates that under persistent excitation conditions, the adaptive law converges exponentially to zero, indicating that the estimated parameters converge exponentially to their true values. Numerical simulations confirm the effectiveness. Furthermore, it is shown that within a certain range of the reaction coefficient, the auxiliary system acts as a state observer, providing an accurate estimate of the system state at an exponential rate. .
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.
基金supported by the Regional Joint Fund for Basic and Applied Basic Research of Guangdong Province(2019B1515120009)the Defense Basic Scientific Research Program(61424132005).
文摘In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).
文摘The angular resolution of radar is of crucial signifi-cance to its tracking performance.In this paper,a super-resolu-tion parameter estimation algorithm based on wide-narrowband joint processing is proposed to improve the angular resolution of wideband monopulse radar.The range cells containing resolv-able scattering points are detected in the wideband mode,and these range cells are adopted to estimate part of the target parameters by algorithms of low computational requirement.Then,the likelihood function of the echo is constructed in the narrow-band mode to estimate the rest of the parameters,and the parameters estimated in the wideband mode are employed to reduce computation and enhance estimation accuracy.Simu-lation results demonstrate that the proposed algorithm has higher estimation accuracy and lower computational complexity than the current algorithm and can avoid the risk of model mis-match.
基金supported by National Natural Science Foundation of China(Grant Nos.52279137,52009090).
文摘Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.
基金Project supported by the National Natural Science Foundation of China(Grant No.61973037)。
文摘In view of the complexity of existing linear frequency modulation(LFM)signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio(SNR),a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper.This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency,and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator.On this basis,the corresponding relationship between the reference frequency of the frequencyaligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method,and the frequency information of the LFM signal is determined.Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of-25 dB.
基金National Natural Science Foundation of China (4007401340134010)Chinese Joint Seismological Science Foundation (042002) and the project during the Tenth Five-year Plan.
文摘Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.
文摘Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.
基金Supported by the National Natural Science Foundation of China(12261108)the General Program of Basic Research Programs of Yunnan Province(202401AT070126)+1 种基金the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007)the Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province,China(202405AS350003).
文摘The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.
基金supported in part by the National Natural Science Foundation of China(Nos.42271448,41701531)the Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNRG202317)。
文摘Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.
基金supported in part by the National Natural Science Founda⁃tion of China(NSFC)under Grant Nos.62301148,62341107,and 62261160576by the Natural Science Foundation of Jiangsu Prov⁃ince under Grant No.BK20230824in part by the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Indus⁃try)under Grant Nos.BE2023022 and BE2023022-1.
文摘Extremely large-scale hybrid reconfigurable intelligence surface(XL-HRIS),an improved version of the RIS,can receive the incident signal and enhance communication performance.However,as the RIS size increases,the phase variations of the received signal across the whole array are nonnegligible in the near-field region,and the channel model mismatch,which will decrease the estimation accuracy,must be considered.In this paper,the lower bound(LB)of the estimated parameter is studied and the impacts of the distance and signal-tonoise ratio(SNR)on LB are then evaluated.Moreover,the impacts of the array scale on LB and spectral efficiency(SE)are also studied.Simulation results verify that even in extremely large-scale array systems with infinite SNR,channel model mismatch can still limit estimation accuracy.However,this impact decreases with increasing distance.
基金Supported by the central university basic scientific research fund(XDJK2009C006)from Ministry of Educationthe National Youth Science Fund(41201436)from National Science Counci~~
文摘With the development of precision agriculture, the research that applies Remote Sensing technology, especially hyperspectral remote sensing, to realize crop management, monitoring and yield estimation, has been concerned. Nowadays, the growth-monitoring and yield-estimating methods in rice, wheat and other annual crops develop rapidly with some achievements having already been put into service. But the yield estimation research on perennial economic crops is few. Taking peren- nial citrus trees as the research object, using ASD spectrometer to collect citrus canopy spectral, this article studied and analyzed the citrus of veget&tion index and its relationship on yield, synthetically considered the influence of the agriculture pa- rameters on crop yield, and finally constructed the citrus yield estimation model based on the spectral data and agronomic parameters. Through the Significance Test and Samples' Test, olutained that the model's fitting degree was R=0.631, F= 13.201, P〈0.01 and the error rate of estimating accuracy was controlled in the range 3%-16%, proving that the model has statistical signification and reliability. It concluded that hyperspectral acquired from citrus canopy has substantial potential for citrus yield estimation. This study is an application and exploration of Hyperspectral Remote Sensing technology in the citrus yield estimation.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.