Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s...To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.展开更多
Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless indu...Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless induction heating.By adjusting the reaction conditions,the catalyst is able to perform CO_(2)methanation reaction under autothermal process operated inside a non-adiabatic reactor,without any external energy supply.Such autothermal process is possible thanks to the high apparent density of the UO_x which allows one to confine the reaction heat in a small catalyst volume in order to confine the exothermicity of the reaction inside the catalyst and to operate the reaction at equilibrium heat in-heat out.Such autothermal operation mode allows one to significantly reduce the complexity of the process compared to that operated using adiabatic reactor,where complete insulation is required to prevent heat disequilibrium,in order to reduce as much as possible,the heat exchange with the external medium.The catalyst displays an extremely high stability as a function of time on stream as no apparent deactivation.It is expected that such new catalyst with unprecedented catalytic performance could open new era in the field of heterogeneous catalysis where traditional supports show their limitations to operate catalytic processes under severe reaction conditions.展开更多
This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and ch...This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.展开更多
An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calcula...An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.展开更多
Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive anal...Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.展开更多
This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozon...This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.展开更多
The depletion of the ozone layer, a vital shield protecting the Earth from harmful ultraviolet (UV) radiation, is now a worldwide environmental concern. Human activities, particularly the release of ozone depleting su...The depletion of the ozone layer, a vital shield protecting the Earth from harmful ultraviolet (UV) radiation, is now a worldwide environmental concern. Human activities, particularly the release of ozone depleting substances (ODS), have led to the thinning of this protective layer over recent decades. Simultaneously, illegal trade has emerged as a global challenge, giving rise to economic issues, losses of tax revenue, heightened criminal activities, health risks, and environmental hazards. The depletion of the ozone layer, a critical shield protecting the Earth from harmful ultraviolet (UV) radiation, has become a global environmental concern. This paper delves into the legal dimensions surrounding ozone-depleting substances (ODS), their impact on the ozone layer, and the subsequent risk of skin cancer. As countries navigate international agreements, domestic regulations, and enforcement mechanisms, the intricate interplay between legal frameworks and the health implications of ozone layer depletion comes to the forefront. The paper highlights particular instances of illegal trade in ozone depleting substances, drawing from data reported by the parties to the Montreal Protocol. Notably, China stands out as a significant source of contraband ODS, with other countries such as Bulgaria, Lithuania, Poland, and France reporting numerous cases. Analyzing these case instances offers insights into the efficacy of legal frameworks and enforcement measures. The paper offers a comprehensive set of recommendations to strengthen global control and enforcement against the illegal trade of ozone depleting substances. These recommendations span diverse aspects such as production monitoring, customs collaboration, mutual verification, cross-border agreements, public-private partnerships, international cooperation, detection equipment, global regulatory standards, resource allocation, public awareness campaigns, alternative substance development, and controlling the trade at its source. By applying these recommendations and enhancing enforcement measures, we aim to protect the ozone layer and create a healthier and safer world for future generations and achieve sustainable development goals.展开更多
A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussia...A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.展开更多
A new two-dimensional (2D) analytical model for the threshold-voltage of fully depleted SOI MOSFETs is derived. The 2D potential distribution functions in the active layer of the devices are obtained through solving...A new two-dimensional (2D) analytical model for the threshold-voltage of fully depleted SOI MOSFETs is derived. The 2D potential distribution functions in the active layer of the devices are obtained through solving the 2D Poisson's equation. The minimum of the potential at the oxide-Si layer interface is used to monitor the threshold voltage of the SOI MOSFETs. This model is verified by its excellent agreement with MEDICI simulation using SOI MOSFETs with different gate lengths,gate oxide thicknesses,silicon film thicknesses,and channel doping concentrations.展开更多
In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient sig...In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient signal characteristics of a 0.18-p.m single MOS device, such as SET pulse width, pulse maximum, and collected charge, are measured and an- alyzed at wafer level. We analyze in detail the influences of supply voltage and pulse energy on the SET characteristics of the device under test (DUT). The dependences of SET characteristics on drain-induced barrier lowering (DIBL) and the parasitic bipolar junction transistor (PBJT) are also discussed. These results provide a guide for radiation-hardened deep sub-micrometer PDSOI technology for space electronics applications.展开更多
Based on 3 D-TCAD simulations, single-event transient(SET) effects and charge collection mechanisms in fully depleted silicon-on-insulator(FDSOI) transistors are investigated. This work presents a comparison between28...Based on 3 D-TCAD simulations, single-event transient(SET) effects and charge collection mechanisms in fully depleted silicon-on-insulator(FDSOI) transistors are investigated. This work presents a comparison between28-nm technology and 0.2-lm technology to analyze the impact of strike location on SET sensitivity in FDSOI devices. Simulation results show that the most SET-sensitive region in FDSOI transistors is the drain region near the gate. An in-depth analysis shows that the bipolar amplification effect in FDSOI devices is dependent on the strike locations. In addition, when the drain contact is moved toward the drain direction, the most sensitive region drifts toward the drain and collects more charge. This provides theoretical guidance for SET hardening.展开更多
A temperature-dependent model for threshold voltage and potential distribution of fully depleted silicon-on- insulator metal-oxide-semiconductor field-effect transistors is developed. The two-dimensional potential dis...A temperature-dependent model for threshold voltage and potential distribution of fully depleted silicon-on- insulator metal-oxide-semiconductor field-effect transistors is developed. The two-dimensional potential distribution function in the silicon thin film based on an approximate parabolic function has been applied to solve the two-dimensional Poisson's equation with suitable boundary conditions. The minimum of the surface potential is used to deduce the threshold voltage model. The model reveals the variations of potential distribution and threshold voltage with temperature, taking into account short-channel effects. Furthermore, the model is verified by the SILVACO ATLAS simulation. The calculations and the simulation agree well.展开更多
Due to its high strength,high density,high hardness and good penetration capabilities,Depleted uranium alloys have already shined in armor-piercing projectiles.There should also be a lot of room for improvement in the...Due to its high strength,high density,high hardness and good penetration capabilities,Depleted uranium alloys have already shined in armor-piercing projectiles.There should also be a lot of room for improvement in the application of fragment killing elements.Therefore,regarding the performance of the depleted uranium alloy to penetrate the target plate,further investigation is needed to analyze its advantages and disadvantages compared to tungsten alloy.To study the difference in penetration performance between depleted uranium alloy and tungsten alloy fragments,firstly,a theoretical analysis of the adiabatic shear sensitivity of DU and tungsten alloys was given from the perspective of material constitutive model.Then,taking the cylindrical fragment penetration target as the research object,the penetration process and velocity characteristics of the steel target plates penetrated by DU alloy fragment and tungsten alloy fragment were compared and analyzed,by using finite element software ANSYS/LS-DYNA and Lagrange algorithm.Lastly,the influence of different postures when impacting target and different fragment shapes on the penetration results is carried out in the research.The results show that in the penetration process of the DU and tungsten alloy fragments,the self-sharpening properties of the DU alloy can make the fragment head sharper and the penetrating ability enhance.Under the same conditions,the penetration capability of cylindrical fragment impacting target in vertical posture is better than that in horizontal posture,and the penetration capability of the spherical fragment is slightly better than that of cylindrical fragment.展开更多
CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systema...CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systematic analysis on the heat mining mechanism and performance of CO_(2),as well as the problems that may occur during geothermal energy exploitation at specific gas reservoir conditions.In this paper,a base numerical simulation model of a typical depleted high-temperature gas reservoir was established to simulate the geothermal energy exploitation processes via recycling CO_(2) and water,with a view to investigate whether and/or at which conditions CO_(2) is more suitable than water for geothermal energy exploitation.The problems that may occur during the CO_(2)-based geothermal energy exploitation were also analyzed along with proposed feasible solutions.The results indicate that,for a depleted low-permeability gas reservoir with dimensions of 1000 m×500 m×50 m and temperature of 150℃ using a single injection-production well group for 40 years of operation,the heat mining rate of CO_(2) can be up to 3.8 MW at a circulation flow rate of 18 kg s^(-1)due to its high mobility along with the flow path in the gas reservoir,while the heat mining rate of water is only about 2 MW due to limitations on the injectivity and mobility.The reservoir physical property and injection-production scheme have some effects on the heat mining rate,but CO_(2)always has better performance than water at most reservoir and operation conditions,even under a high water saturation.The main problems for CO_(2) circulation are wellbore corrosion and salt precipitation that can occur when the reservoir has high water saturation and high salinity,in which serious salt precipitation can reduce formation permeability and result in a decline of CO_(2) heat mining rate (e.g.up to 24%reduction).It is proposed to apply a low-salinity water slug before CO_(2)injection to reduce the damage caused by salt precipitation.For high-permeability gas reservoirs with high water saturation and high salinity,the superiority of CO_(2) as a heat transmission fluid becomes obscure and water injection is recommended.展开更多
we investigate the effects of 60^Co γ-ray irradiation on the 130 nm partially-depleted silicon-on-isolator (PDSOI) input/output (I/O) n-MOSFETs. A shallow trench isolation (STI) parasitic transistor is responsi...we investigate the effects of 60^Co γ-ray irradiation on the 130 nm partially-depleted silicon-on-isolator (PDSOI) input/output (I/O) n-MOSFETs. A shallow trench isolation (STI) parasitic transistor is responsible for the observed hump in the back-gate transfer characteristic curve. The STI parasitic transistor, in which the trench oxide acts as the gate oxide, is sensitive to the radiation, and it introduces a new way to characterize the total ionizing dose (TID) responses in the STI oxide. A radiation enhanced drain induced barrier lower (DIBL) effect is observed in the STI parasitic transistor. It is manifested as the drain bias dependence of the radiation-induced off-state leakage and the increase of the DIBL parameter in the STI parasitic transistor after irradiation. Increasing the doping concentration in the whole body region or just near the STI sidewall can increase the threshold voltage of the STI parasitic transistor, and further reduce the radiation-induced off-state leakage. Moreover, we find that the radiation-induced trapped charge in the buried oxide leads to an obvious front-gate threshold voltage shift through the coupling effect. The high doping concentration in the body can effectively suppress the radiation-induced coupling effect.展开更多
On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- s...On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.展开更多
The deformed microstructure evolution of depleted uranium impacted by steel projectile at a velocity of50m/s was investigated by means of confocal laser scanning microscope,electron backscatter diffraction,transmissio...The deformed microstructure evolution of depleted uranium impacted by steel projectile at a velocity of50m/s was investigated by means of confocal laser scanning microscope,electron backscatter diffraction,transmission electron microscope and indenter technique.The experimental results showed that the spherical cap crater was formed in depleted uranium target impacted by steel projectile,and the diameter and depth of the impacted crater were5.45and1.01mm,respectively.From crater rim to deep matrix,four deformed zones were classified,including twin fragmentation zone,high density deformation twin zone,low density deformation twin zone and matrix zone.Twinning was considered as the dominant plastic deformation mechanism of depleted uranium subjected to impact loadings.Besides twinning,the dislocation slipping also played an important role to accommodate the plastic deformation.Finally,the deformed microstructure evolution of depleted uranium under high velocity impact was proposed.展开更多
It has been reported that transplantation of pheochromocytoma P12 and hepatoma cells’ mitochondria improve the locomotive activity and prevent disease progress in experimental Parkinson’s disease rats. To prepare fo...It has been reported that transplantation of pheochromocytoma P12 and hepatoma cells’ mitochondria improve the locomotive activity and prevent disease progress in experimental Parkinson’s disease rats. To prepare for mitochondrial transplantation study in human neurodegenerative diseases, we select human fibroblasts as mitochondrial donor because that fibroblasts share many characteristics with mesenchymal stromal cells (MSCs). We isolate human primary fibroblasts and develop a mitochondrial DNA (mtDNA)-depleted mouse motor neuron NSC-34 cells (NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells). Fibroblast and NSC-34 cell’s mitochondria are co-cultured with NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells. Mitochondrial transplantation is observed by fluorescent microscopy. Gene expression is determined by polymerase chain reaction (PCR) and real time PCR (qPCR). Also, mitochondria are injected to mice bearing mammary adenocarcinoma 4T1 cells. We find results as following: 1) There are abundant mitochondria in fibroblasts (337 ± 80 mitochondria per fibroblast). 42.4% of viable mitochondria are obtained by using differential centrifugation. The isolated mitochondria actively transplant into NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells after co-culture. 2) Fibroblasts transfer mitochondria to human mammary adenocarcinoma MCF-7 cells. 3) There is no expression of HLA-I antigen in fibroblast’s mitochondria indicating they can be used for allogeneic mitochondrial transplantation without HLA antigen match. 4) PCR and qPCR show that NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells lose mitochondrially encoded cytochrome c oxidase I (MT-CO1) and mitochondrially encoded NADH dehydrogenase 1 (MT-ND1) and upregulate expression of glycolysis-associated genes hexokinase (HK2), glucose transporter 1 (SLC2A1) and lactate dehydrogenase A (LDHA). 5) Transplantation of NSC-34 mitochondria restores MT-CO1 and MT-ND1 and downregulates gene expression of HK2, SLC2A1 and LDHA. 6) Normal mammary epithelial mitochondria successfully enter to 4T1 cells in mice. Subcutaneous injection of mitochondria is safe for mice. In summary, mitochondrial transplantation replenishes mtDNA and rescues aerobic respiration of diseased cells with mitochondrial dysfunction. Human primary fibroblasts are potential mitochondrial donor for mitochondrial transplantation study in human neurodegenerative diseases.展开更多
An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13?μm partially depleted silicon-on-insulator technology. The measured ...An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13?μm partially depleted silicon-on-insulator technology. The measured results and 3D technology computer aided design simulations demonstrate that the devices with different channel lengths may exhibit an enhanced reverse short channel effect after radiation. It is ascribed to that the halo or pocket implants introduced in processes results in non-uniform channel doping profiles along the device length and trapped charges in the shallow trench isolation regions.展开更多
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
基金This work is funded by National Natural Science Foundation of China(Nos.42202292,42141011)the Program for Jilin University(JLU)Science and Technology Innovative Research Team(No.2019TD-35).The authors would also like to thank the reviewers and editors whose critical comments are very helpful in preparing this article.
文摘To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.
基金ORANO Chimie-Enrichissement Co.for the financial support of this project。
文摘Undoped nickel-based catalysts supported on depleted uranium oxide allow one to carry out CO_(2)methanation process under extremely low reaction temperature under atmospheric pressure and powered by a contactless induction heating.By adjusting the reaction conditions,the catalyst is able to perform CO_(2)methanation reaction under autothermal process operated inside a non-adiabatic reactor,without any external energy supply.Such autothermal process is possible thanks to the high apparent density of the UO_x which allows one to confine the reaction heat in a small catalyst volume in order to confine the exothermicity of the reaction inside the catalyst and to operate the reaction at equilibrium heat in-heat out.Such autothermal operation mode allows one to significantly reduce the complexity of the process compared to that operated using adiabatic reactor,where complete insulation is required to prevent heat disequilibrium,in order to reduce as much as possible,the heat exchange with the external medium.The catalyst displays an extremely high stability as a function of time on stream as no apparent deactivation.It is expected that such new catalyst with unprecedented catalytic performance could open new era in the field of heterogeneous catalysis where traditional supports show their limitations to operate catalytic processes under severe reaction conditions.
文摘This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.
基金supported by the Fundamental Research Funds for Central Universities,China(No.N2025004)the National Natural Science Foundation of China(Nos.U2102213,U1702253,52204419)+2 种基金Major Science and Technology Project of Liaoning Province,China(No.2021JH1/10400032)Major Science and Technology Project of Guangxi Province,China(No.2021AA12013)Liaoning Natural Science Foundation,China(No.2022-BS-076)。
文摘An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.
基金funding from the Key Research Project of Tarim Oilfield Company of Petrochina(671023060003)for this study.
文摘Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.
文摘This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.
文摘The depletion of the ozone layer, a vital shield protecting the Earth from harmful ultraviolet (UV) radiation, is now a worldwide environmental concern. Human activities, particularly the release of ozone depleting substances (ODS), have led to the thinning of this protective layer over recent decades. Simultaneously, illegal trade has emerged as a global challenge, giving rise to economic issues, losses of tax revenue, heightened criminal activities, health risks, and environmental hazards. The depletion of the ozone layer, a critical shield protecting the Earth from harmful ultraviolet (UV) radiation, has become a global environmental concern. This paper delves into the legal dimensions surrounding ozone-depleting substances (ODS), their impact on the ozone layer, and the subsequent risk of skin cancer. As countries navigate international agreements, domestic regulations, and enforcement mechanisms, the intricate interplay between legal frameworks and the health implications of ozone layer depletion comes to the forefront. The paper highlights particular instances of illegal trade in ozone depleting substances, drawing from data reported by the parties to the Montreal Protocol. Notably, China stands out as a significant source of contraband ODS, with other countries such as Bulgaria, Lithuania, Poland, and France reporting numerous cases. Analyzing these case instances offers insights into the efficacy of legal frameworks and enforcement measures. The paper offers a comprehensive set of recommendations to strengthen global control and enforcement against the illegal trade of ozone depleting substances. These recommendations span diverse aspects such as production monitoring, customs collaboration, mutual verification, cross-border agreements, public-private partnerships, international cooperation, detection equipment, global regulatory standards, resource allocation, public awareness campaigns, alternative substance development, and controlling the trade at its source. By applying these recommendations and enhancing enforcement measures, we aim to protect the ozone layer and create a healthier and safer world for future generations and achieve sustainable development goals.
文摘A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.
文摘A new two-dimensional (2D) analytical model for the threshold-voltage of fully depleted SOI MOSFETs is derived. The 2D potential distribution functions in the active layer of the devices are obtained through solving the 2D Poisson's equation. The minimum of the potential at the oxide-Si layer interface is used to monitor the threshold voltage of the SOI MOSFETs. This model is verified by its excellent agreement with MEDICI simulation using SOI MOSFETs with different gate lengths,gate oxide thicknesses,silicon film thicknesses,and channel doping concentrations.
文摘In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient signal characteristics of a 0.18-p.m single MOS device, such as SET pulse width, pulse maximum, and collected charge, are measured and an- alyzed at wafer level. We analyze in detail the influences of supply voltage and pulse energy on the SET characteristics of the device under test (DUT). The dependences of SET characteristics on drain-induced barrier lowering (DIBL) and the parasitic bipolar junction transistor (PBJT) are also discussed. These results provide a guide for radiation-hardened deep sub-micrometer PDSOI technology for space electronics applications.
基金supported by the National Natural Science Foundation of China(Nos.61434007 and 61376109)
文摘Based on 3 D-TCAD simulations, single-event transient(SET) effects and charge collection mechanisms in fully depleted silicon-on-insulator(FDSOI) transistors are investigated. This work presents a comparison between28-nm technology and 0.2-lm technology to analyze the impact of strike location on SET sensitivity in FDSOI devices. Simulation results show that the most SET-sensitive region in FDSOI transistors is the drain region near the gate. An in-depth analysis shows that the bipolar amplification effect in FDSOI devices is dependent on the strike locations. In addition, when the drain contact is moved toward the drain direction, the most sensitive region drifts toward the drain and collects more charge. This provides theoretical guidance for SET hardening.
文摘A temperature-dependent model for threshold voltage and potential distribution of fully depleted silicon-on- insulator metal-oxide-semiconductor field-effect transistors is developed. The two-dimensional potential distribution function in the silicon thin film based on an approximate parabolic function has been applied to solve the two-dimensional Poisson's equation with suitable boundary conditions. The minimum of the surface potential is used to deduce the threshold voltage model. The model reveals the variations of potential distribution and threshold voltage with temperature, taking into account short-channel effects. Furthermore, the model is verified by the SILVACO ATLAS simulation. The calculations and the simulation agree well.
文摘Due to its high strength,high density,high hardness and good penetration capabilities,Depleted uranium alloys have already shined in armor-piercing projectiles.There should also be a lot of room for improvement in the application of fragment killing elements.Therefore,regarding the performance of the depleted uranium alloy to penetrate the target plate,further investigation is needed to analyze its advantages and disadvantages compared to tungsten alloy.To study the difference in penetration performance between depleted uranium alloy and tungsten alloy fragments,firstly,a theoretical analysis of the adiabatic shear sensitivity of DU and tungsten alloys was given from the perspective of material constitutive model.Then,taking the cylindrical fragment penetration target as the research object,the penetration process and velocity characteristics of the steel target plates penetrated by DU alloy fragment and tungsten alloy fragment were compared and analyzed,by using finite element software ANSYS/LS-DYNA and Lagrange algorithm.Lastly,the influence of different postures when impacting target and different fragment shapes on the penetration results is carried out in the research.The results show that in the penetration process of the DU and tungsten alloy fragments,the self-sharpening properties of the DU alloy can make the fragment head sharper and the penetrating ability enhance.Under the same conditions,the penetration capability of cylindrical fragment impacting target in vertical posture is better than that in horizontal posture,and the penetration capability of the spherical fragment is slightly better than that of cylindrical fragment.
基金This research was financially supported by the National Natural Science Foundation of China(Grant No.51674282)the National Key R&D Programs of China(Grant No.2019YFB1504201,2019YFB1504203,and 2019YFB1504204)+2 种基金the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGGC09 and CUG200637)the Open Project Program of Key Laboratory of Groundwater Resources and Environment(Jilin University),Ministry of Education(Grant No.202005001KF)Opening Fund of Key Laboratory of Unconventional Oil&Gas Development(China University of Petroleum(East China)),Ministry of Education(Grant No.19CX05005A-201)。
文摘CO_(2) can be used as an alternative injectant to exploit geothermal energy from depleted high-temperature gas reservoirs due to its high mobility and unique thermal properties.However,there has been a lack of systematic analysis on the heat mining mechanism and performance of CO_(2),as well as the problems that may occur during geothermal energy exploitation at specific gas reservoir conditions.In this paper,a base numerical simulation model of a typical depleted high-temperature gas reservoir was established to simulate the geothermal energy exploitation processes via recycling CO_(2) and water,with a view to investigate whether and/or at which conditions CO_(2) is more suitable than water for geothermal energy exploitation.The problems that may occur during the CO_(2)-based geothermal energy exploitation were also analyzed along with proposed feasible solutions.The results indicate that,for a depleted low-permeability gas reservoir with dimensions of 1000 m×500 m×50 m and temperature of 150℃ using a single injection-production well group for 40 years of operation,the heat mining rate of CO_(2) can be up to 3.8 MW at a circulation flow rate of 18 kg s^(-1)due to its high mobility along with the flow path in the gas reservoir,while the heat mining rate of water is only about 2 MW due to limitations on the injectivity and mobility.The reservoir physical property and injection-production scheme have some effects on the heat mining rate,but CO_(2)always has better performance than water at most reservoir and operation conditions,even under a high water saturation.The main problems for CO_(2) circulation are wellbore corrosion and salt precipitation that can occur when the reservoir has high water saturation and high salinity,in which serious salt precipitation can reduce formation permeability and result in a decline of CO_(2) heat mining rate (e.g.up to 24%reduction).It is proposed to apply a low-salinity water slug before CO_(2)injection to reduce the damage caused by salt precipitation.For high-permeability gas reservoirs with high water saturation and high salinity,the superiority of CO_(2) as a heat transmission fluid becomes obscure and water injection is recommended.
基金supported by the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China(Grant No.ZHD201205)the National Natural Science Foundation of China(Grant No.61106103)
文摘we investigate the effects of 60^Co γ-ray irradiation on the 130 nm partially-depleted silicon-on-isolator (PDSOI) input/output (I/O) n-MOSFETs. A shallow trench isolation (STI) parasitic transistor is responsible for the observed hump in the back-gate transfer characteristic curve. The STI parasitic transistor, in which the trench oxide acts as the gate oxide, is sensitive to the radiation, and it introduces a new way to characterize the total ionizing dose (TID) responses in the STI oxide. A radiation enhanced drain induced barrier lower (DIBL) effect is observed in the STI parasitic transistor. It is manifested as the drain bias dependence of the radiation-induced off-state leakage and the increase of the DIBL parameter in the STI parasitic transistor after irradiation. Increasing the doping concentration in the whole body region or just near the STI sidewall can increase the threshold voltage of the STI parasitic transistor, and further reduce the radiation-induced off-state leakage. Moreover, we find that the radiation-induced trapped charge in the buried oxide leads to an obvious front-gate threshold voltage shift through the coupling effect. The high doping concentration in the body can effectively suppress the radiation-induced coupling effect.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61404151 and 61574153
文摘On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.
基金Project(2014B0301046)supported by the Science Development Fund of China Academy of Engineering PhysicsProject(51401187)supported by the National Natural Science Foundation of China
文摘The deformed microstructure evolution of depleted uranium impacted by steel projectile at a velocity of50m/s was investigated by means of confocal laser scanning microscope,electron backscatter diffraction,transmission electron microscope and indenter technique.The experimental results showed that the spherical cap crater was formed in depleted uranium target impacted by steel projectile,and the diameter and depth of the impacted crater were5.45and1.01mm,respectively.From crater rim to deep matrix,four deformed zones were classified,including twin fragmentation zone,high density deformation twin zone,low density deformation twin zone and matrix zone.Twinning was considered as the dominant plastic deformation mechanism of depleted uranium subjected to impact loadings.Besides twinning,the dislocation slipping also played an important role to accommodate the plastic deformation.Finally,the deformed microstructure evolution of depleted uranium under high velocity impact was proposed.
文摘It has been reported that transplantation of pheochromocytoma P12 and hepatoma cells’ mitochondria improve the locomotive activity and prevent disease progress in experimental Parkinson’s disease rats. To prepare for mitochondrial transplantation study in human neurodegenerative diseases, we select human fibroblasts as mitochondrial donor because that fibroblasts share many characteristics with mesenchymal stromal cells (MSCs). We isolate human primary fibroblasts and develop a mitochondrial DNA (mtDNA)-depleted mouse motor neuron NSC-34 cells (NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells). Fibroblast and NSC-34 cell’s mitochondria are co-cultured with NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells. Mitochondrial transplantation is observed by fluorescent microscopy. Gene expression is determined by polymerase chain reaction (PCR) and real time PCR (qPCR). Also, mitochondria are injected to mice bearing mammary adenocarcinoma 4T1 cells. We find results as following: 1) There are abundant mitochondria in fibroblasts (337 ± 80 mitochondria per fibroblast). 42.4% of viable mitochondria are obtained by using differential centrifugation. The isolated mitochondria actively transplant into NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells after co-culture. 2) Fibroblasts transfer mitochondria to human mammary adenocarcinoma MCF-7 cells. 3) There is no expression of HLA-I antigen in fibroblast’s mitochondria indicating they can be used for allogeneic mitochondrial transplantation without HLA antigen match. 4) PCR and qPCR show that NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells lose mitochondrially encoded cytochrome c oxidase I (MT-CO1) and mitochondrially encoded NADH dehydrogenase 1 (MT-ND1) and upregulate expression of glycolysis-associated genes hexokinase (HK2), glucose transporter 1 (SLC2A1) and lactate dehydrogenase A (LDHA). 5) Transplantation of NSC-34 mitochondria restores MT-CO1 and MT-ND1 and downregulates gene expression of HK2, SLC2A1 and LDHA. 6) Normal mammary epithelial mitochondria successfully enter to 4T1 cells in mice. Subcutaneous injection of mitochondria is safe for mice. In summary, mitochondrial transplantation replenishes mtDNA and rescues aerobic respiration of diseased cells with mitochondrial dysfunction. Human primary fibroblasts are potential mitochondrial donor for mitochondrial transplantation study in human neurodegenerative diseases.
基金Supported by the Weapon Equipment Pre-Research Foundation of China under Grant No 9140A11020114ZK34147the Shanghai Municipal Natural Science Foundation under Grant Nos 15ZR1447100 and 15ZR1447200
文摘An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13?μm partially depleted silicon-on-insulator technology. The measured results and 3D technology computer aided design simulations demonstrate that the devices with different channel lengths may exhibit an enhanced reverse short channel effect after radiation. It is ascribed to that the halo or pocket implants introduced in processes results in non-uniform channel doping profiles along the device length and trapped charges in the shallow trench isolation regions.