In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson ...In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.展开更多
For every i = 1, 2, we let Li =-?ni+ Vi be a Schr¨odinger operator on Rni in which Vi∈ L1loc(Rni)is a non-negative function on Rni. We obtain some characterizations for functions in the product Hardy space H1L1,...For every i = 1, 2, we let Li =-?ni+ Vi be a Schr¨odinger operator on Rni in which Vi∈ L1loc(Rni)is a non-negative function on Rni. We obtain some characterizations for functions in the product Hardy space H1L1,L2(Rn1 × Rn2) associated to L1 and L2 by using different norms on distinct variables.展开更多
We consider the local boundary values of generalized harmonic functions associated with the rank-one Dunkl operator D in the upper half-plane R2+=R×(0,∞),where(Df)(x)=f′0(x)+(λ/x)[f(x)-f(-x)]for givenλ≥0.A C...We consider the local boundary values of generalized harmonic functions associated with the rank-one Dunkl operator D in the upper half-plane R2+=R×(0,∞),where(Df)(x)=f′0(x)+(λ/x)[f(x)-f(-x)]for givenλ≥0.A C2 function u in R2+is said to beλ-harmonic if(D2x+■2y)u=0.For aλ-harmonic function u in R2+and for a subset E of■R2+=R symmetric about y-axis,we prove that the following three assertions are equivalent:(i)u has a finite non-tangential limit at(x,0)for a.e.x∈E;(ii)u is non-tangentially bounded for a.e.x∈E;(iii)(Su)(x)<∞for a.e.x∈E,where S is a Lusin-type area integral associated with the Dunkl operator D.展开更多
文摘In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.
基金supported by National Natural Science Foundation of China (Grant Nos. 11471176 and 11326093)Natural Science Foundation of Shandong Province for Doctor (Grant No. BS2014SF002)
文摘For every i = 1, 2, we let Li =-?ni+ Vi be a Schr¨odinger operator on Rni in which Vi∈ L1loc(Rni)is a non-negative function on Rni. We obtain some characterizations for functions in the product Hardy space H1L1,L2(Rn1 × Rn2) associated to L1 and L2 by using different norms on distinct variables.
基金the National Natural Science Foundation of China(No.11371258).
文摘We consider the local boundary values of generalized harmonic functions associated with the rank-one Dunkl operator D in the upper half-plane R2+=R×(0,∞),where(Df)(x)=f′0(x)+(λ/x)[f(x)-f(-x)]for givenλ≥0.A C2 function u in R2+is said to beλ-harmonic if(D2x+■2y)u=0.For aλ-harmonic function u in R2+and for a subset E of■R2+=R symmetric about y-axis,we prove that the following three assertions are equivalent:(i)u has a finite non-tangential limit at(x,0)for a.e.x∈E;(ii)u is non-tangentially bounded for a.e.x∈E;(iii)(Su)(x)<∞for a.e.x∈E,where S is a Lusin-type area integral associated with the Dunkl operator D.