期刊文献+
共找到2,666篇文章
< 1 2 134 >
每页显示 20 50 100
Study on the dynamic contact relationship between layers under temperature gradients in CRTSⅢ ballastless track
1
作者 Lei Zhao Guotang Zhao +2 位作者 Guotao Yang Hao Jin Chenxi Li 《High-Speed Railway》 2024年第3期133-142,共10页
In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities ... In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage.Therefore,it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running.The results of the study show that:1)Under the influence of temperature gradients,the composite slab tends to deform elliptically.With a positive temperature gradient,the middle part of the track slab bulges upward,causing the slab to be supported by its four corners.Conversely,with a negative temperature gradient,the four corners of the track slab bulge upward,resulting in the slab being supported by its center.2)Temperature gradients can lead to separation between the composite slab and the base plate,reducing the contact area between layers.During vehicle running,the contact area between layers gradually increases,but the separation cannot be completely closed.3)The temperature gradient significantly affects the vertical displacement of the track.The vertical displacement in the middle of the slab increases with a positive temperature gradient.In contrast,the vertical displacement at the ends of the slab increases with a negative temperature gradient.4)The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient,with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90℃·m^(-1). 展开更多
关键词 High-speed railway Ballastless track temperature gradient Periodic irregularities Interlayer contact
下载PDF
Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport
2
作者 刘逸飞 李继全 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期8-15,共8页
The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic... The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient. 展开更多
关键词 gyro-Landau-fluid simulation impurity effects ion temperature gradient mode turbulence transport
下载PDF
Three-Dimensional Convection in an Inclined Porous Layer Subjected to a Vertical Temperature Gradient
3
作者 Ivan Shubenkov Tatyana Lyubimova Evgeny Sadilov 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1957-1970,共14页
In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gra... In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gradient.Typically,problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming constant different temperatures at the boundaries of the layer,which prevent these systems from supporting conductive(non-convective)states.The boundary conditions considered in the present work allow a conductive state and are representative of typical geological applications.In an earlier work,we carried out a linear stability analysis of the conductive state.It was shown that at any layer tilt angles,the most dangerous type of disturbances are longitudinal rolls.Moreover,a non-zero velocity component exists in z-direction.In the present work,threedimensional non-linear convection regimes are studied.The original three-dimensional problem is reduced to two-dimensional one with an analytical expression for the velocity z-component v_(z)=v_(z)(x,y).It is shown that the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite difference method for different layer inclination angles,are in a good agreement with those predicted by the linear theory.The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for a given cavity geometry.Calculations carried out at low supercriticalities show that a direct bifurcation takes place.With increasing supercriticality,no transitions to other convective regimes are detected.The situation studied in this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature gradient,where the ensuing fluid convection can affect the distribution of oil throughout the layer. 展开更多
关键词 Thermal convection inclined layer porous media vertical temperature gradient
下载PDF
Analysis of piezoelectric semiconductor fibers under gradient temperature changes
4
作者 Shuangpeng LI Ruoran CHENG +1 位作者 Nannan MA Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期311-320,共10页
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ... Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects. 展开更多
关键词 piezoelectric semiconductor(PS)fiber one-dimensional(1D)model piezotronic effect gradient temperature change
下载PDF
Effect of temperature gradientinduced periodic deformation of CRTS Ⅲ slab track on dynamic responses of the train-track system
5
作者 Wang Jijun Zhang Huanxin +1 位作者 Shi Cheng Wang Meng 《Railway Sciences》 2024年第4期437-452,共16页
Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynam... Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track. 展开更多
关键词 Ballastless track CRTSⅢslab track temperature gradient Periodic deformation Train performance
下载PDF
Temperature Gradient Analyses of a Tubular Solid Oxide Fuel Cell Fueled by Methanol
6
作者 Qidong Xu Meiting Guo +5 位作者 Lingchao Xia Zheng Li Qijiao He Dongqi Zhao Keqing Zheng Meng Ni 《Transactions of Tianjin University》 EI CAS 2023年第1期14-30,共17页
Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to inve... Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to investigate the thermal responses of a tubular methanol-fueled SOFC.Results show that unlike the low-temperature condition of 873 K,where the peak temperature gradient occurs at the cell center,it appears near the fuel inlet at 1073 K because of the rapid temperature rise induced by the elevated current density.Despite the large heat convection capacity,excessive air could not eff ectively eliminate the harmful temperature gradient caused by the large current density.Thus,optimal control of the current density by properly selecting the operating potential could generate a local thermal neutral state.Interestingly,the maximum axial temperature gradient could be reduced by about 18%at 973 K and 20%at 1073 K when the air with a 5 K higher temperature is supplied.Additionally,despite the higher electrochemical performance observed,the cell with a counter-fl ow arrange-ment featured by a larger hot area and higher maximum temperature gradients is not preferable for a ceramic SOFC system considering thermal durability.Overall,this study could provide insightful thermal information for the operating condition selection,structure design,and stability assessment of realistic SOFCs combined with their internal reforming process. 展开更多
关键词 Solid oxide fuel cell MODELING Methanol fuel temperature gradient Internal reforming
下载PDF
Effects of transient temperature gradient on frost heave of saturated silty clay in an open system
7
作者 HongYan Ma YuanFang Cui +2 位作者 JianQiao Zhang Song Li Song Xu 《Research in Cold and Arid Regions》 CSCD 2023年第6期268-277,共10页
Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work in... Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type. 展开更多
关键词 Saturated silty clay Frost heave Transient temperature gradient Frost heave ratio Frost heave rate
下载PDF
Temperature gradients in concrete box girder bridge under effect of cold wave 被引量:3
8
作者 顾斌 陈志坚 陈欣迪 《Journal of Central South University》 SCIE EI CAS 2014年第3期1227-1241,共15页
The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or... The temperature distributions of a prestressed concrete box girder bridge under the effect of cold wave processes were analyzed. The distributions were found different from those under the effect of solar radiation or nighttime radiation cooling and should not be simplified as one dimensional. A temperature predicting model that can accurately predict temperatures over the cross section of the concrete box girder was developed. On the basis of the analytical model, a two-dimensional temperature gradient model was proposed and a parametric study that considered meteorological factors was performed. The results of sensitivity analysis show that the cold wave with shorter duration and more severe temperature drop may cause more unfavorable influences on the concrete box girder bridge. Finally, the unrestrained linear curvatures, self-equilibrating stresses and bending stresses when considering the frame action of the cross section, were derived from the proposed temperature gradient model and current code provisions, respectively. Then, a comparison was made between the value calculated against proposed model and several current specifications. The results show that the cold wave may cause more unfavorable effect on the concrete box girder bridge, especially on the large concrete box girder bridge. Therefore, it is necessary to consider the thermal effect caused by cold wave during the design stage. 展开更多
关键词 concrete box girder temperature field temperature gradient cold wave
下载PDF
Experimental study on moisture migration of remodeled clay under different overburden pressure and temperature gradients 被引量:1
9
作者 Feng Ming DongQing Li +1 位作者 Xing Huang JianHong Fang 《Research in Cold and Arid Regions》 CSCD 2013年第5期562-571,共10页
Unidirectional freezing experiments under overburden pressure were carried out, in order to study the driving force of mois- ture migration of remodeled clay during freezing, through improving the indoor moisture migr... Unidirectional freezing experiments under overburden pressure were carried out, in order to study the driving force of mois- ture migration of remodeled clay during freezing, through improving the indoor moisture migration test device. Overburden pressure and cooling temperature with the same circumstance were changed to determine the influence on water migration of a single factor. Results show that water content increases above the location of the final ice lenses and decreases below the loca- tion. When the overburden pressure increases, water intake gradually decreases and the time starting to absorb water is delayed. The location of the final ice lens is not sensitive to overburden pressure but influenced by the temperature boundary. The im- pact of overburden pressure and maximum temperature is not obvious. Freezing rate is not sensitive to overburden pressure but influenced by temperature, and it increases when the cold temperature decreases. Frost heave and water intake flow in- creases with increasing time and rises up to a peak value, and then decreases. During the freezing process, water intake flow increases when freezing rate decreases. Water intake flow decreases when the overburden pressure increases when the cold temperature decreases. Finally, we expanded the segregation theory, and proposed a model to describe the relationship between water intake flow and freezing rate. 展开更多
关键词 frost heave moisture migration overburden pressure temperature gradient open system indoor experiments
下载PDF
Suppression of ice nucleation in supercooled water under temperature gradients 被引量:1
10
作者 Li-Ping Wang Wei-Liang Kong +2 位作者 Pei-Xiang Bian Fu-Xin Wang Hong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期657-666,共10页
Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gra... Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory(CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius,nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively.The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely. 展开更多
关键词 supercooled water ice nucleation temperature gradient thermodynamic analysis classical nucleation theory
下载PDF
Effect of Non-Uniform Temperature Gradient on the Onset of Rayleigh-Bénard Electro Convection in a Micropolar Fluid
11
作者 Subbarama Pranesh Riya Baby 《Applied Mathematics》 2012年第5期442-450,共9页
The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for... The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations and for isothermal and/or adiabatic temperature boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analyzed. One linear and five non-uniform temperature profiles are considered and their comparative influence on onset is discussed. 展开更多
关键词 MICROPOLAR Fluid RAYLEIGH Number ELECTRO CONVECTION non-uniform temperature gradients GALERKIN Technique
下载PDF
Effect of Non-Uniform Basic Temperature Gradient on the Onset of Rayleigh-Bénard-Marangoni Electro-Convectionin a Micropolar Fluid
12
作者 Thadathil Varghese Joseph Sree Ramaiah Manjunath Subbarama Pranesh 《Applied Mathematics》 2013年第8期1180-1188,共9页
The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are ob... The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for an upper free/adiabatic and lower rigid/isothermal boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their comparative influence on onset is discussed. 展开更多
关键词 Rayleigh-Bénard-Marangoni non-uniform temperature gradient Electric Field MICROPOLAR Fluid GALERKIN Technique
下载PDF
ISSR analysis of Caragana microphylla(Leguminosae) in different temperature gradients
13
作者 WenDa Huang XueYong Zhao +4 位作者 YuLin Li YuQiang Li YaYong Luo Jing Feng Na Su 《Research in Cold and Arid Regions》 CSCD 2015年第1期99-103,共5页
Caragana microphylla is the most dominant and constructive shrub species in the Horqin Sandy Land of northeastern China. We evaluated the level of genetic variation within and among C. microphylla populations sampled ... Caragana microphylla is the most dominant and constructive shrub species in the Horqin Sandy Land of northeastern China. We evaluated the level of genetic variation within and among C. microphylla populations sampled from three different temperature gradients in the Horqin Sandy Land by using inter-simple sequence repeat polymorphism (ISSR) molecular markers. The results show that eight ISSR primers generated 127 bands, of which 123 (96.85%) were polymorphic. At the species level, genetic diversity was relatively high (P = 96.85%, h = 0.3143, I = 0.4790). The highest genetic diversity was observed in the Subp6 population from low temperature regions, whereas the lowest diversity was found in the Subp2 population from high temperature regions. Six populations of C. microphylla clustered into two clades. These results have important implications for restoring and managing the degraded ecosystem in arid and semi-arid areas. 展开更多
关键词 Caragana microphylla temperature gradients ISSR Horqin Sandy Land
下载PDF
Effect of non-uniform temperature gradient and magnetic field on onset of Marangoni convection heated from below by a constant heat flux
14
作者 S.P.M.ISA N.M.ARIFIN +1 位作者 R.NAZAR M.N.SAAD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第7期797-804,共8页
This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear... This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented. 展开更多
关键词 Maxangoni convection non-uniform temperature magnetic field
下载PDF
Study on Temperature Gradients and Protein Enrichment by <i>Aspergillus oryzae</i>in Solid-State Fermentation on Packed Bed Bioreactor Using Jowar (Sorghum) Straw as Substrate
15
作者 Ganesh A. Bathe Vilas S. Patil Ashish S. Chaurasia 《Journal of Sustainable Bioenergy Systems》 2012年第3期33-36,共4页
The packed bed solid state bioreactor designated as PBSSB is constructed in the present study. The experiments are carried out in packed bed bioreactor with jowar straw and inoculated with Aspergillus oryzae. Temperat... The packed bed solid state bioreactor designated as PBSSB is constructed in the present study. The experiments are carried out in packed bed bioreactor with jowar straw and inoculated with Aspergillus oryzae. Temperature gradient has been measured at different axial positions. It is found that the organisms grew rapidly during the period from 20 to 30 h during which heat generation is more. These results are in agreement with other researchers. The fermented jowar straw shows threefold increase in protein content. This can be utilized as high value nutritional feed to animals. 展开更多
关键词 Solid-State Fermentation PACKED-BED Bioreactor Aspergillus ORYZAE Jowar STRAW temperature gradient
下载PDF
Fine Measurements and Analysis of Temperature Gradients in the Wells of the Jinsha River Groundwater Observational Network
16
作者 Che Yongtai He Anhua +2 位作者 Yu Jinzi Liu Chenglong Li Wanming 《Earthquake Research in China》 2012年第1期59-72,共14页
Fine measurements have been conducted to temperatures and their gradients of six wells of the Jinsha River Groundwater Observational Network.The results show that the influence depths of sun radiation heat are 50m to ... Fine measurements have been conducted to temperatures and their gradients of six wells of the Jinsha River Groundwater Observational Network.The results show that the influence depths of sun radiation heat are 50m to 125m,average temperature gradients in the wells range from 0.11 to 2.81℃/hm and most are 1~2℃/hm,and the temperature gradients on varied depth sections of one well are highly changeable.Lithology of strata and their integrity,particularly high-angle crashed fault zones,have imposed major effects on the influence depths of sun radiation heat and temperature gradients of the wells.The micro dynamic characteristics of water temperature,such as coseismic effects,tidal effects and anomalies of the wells prior to earthquakes,probably depend,to a large degree,on the temperature gradients of the depths at which the water temperature sensors are settled. 展开更多
关键词 temperature temperature gradient Observational well Jinsha RiverGroundwater Observational Network
下载PDF
Effect of Sinusoidal Heating on Natural Convection Coupled to Thermal Radiation in a Square Cavity Subjected to Cross Temperature Gradients
17
作者 Rachid El Ayachi Abdelghani Raji +2 位作者 Mohamed Naimi Hassan Elharfi Mohammed Hasnaoui 《Journal of Electronics Cooling and Thermal Control》 2013年第1期7-21,共15页
Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active elements are cent... Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active elements are centrally located on the walls of the cavity. Two heating modes, called SB and SV, are considered. They correspond to bottom and vertical left elements sinusoidally heated in time, respectively, while the top and vertical right ones are constantly cooled. The remaining portions of all the walls are considered adiabatic. The parameters governing the problem are the amplitude and the period of the temporally sinusoidal temperature, the emissivity of the walls , the relative lengths of the active elements and the Rayleigh number . The effect of such parameters on flow and thermal fields and the resulting heat transfer is examined. It is shown that, during a flow cycle, the flow structure can present complex behavior, depending on the emissivity and the amplitude and period of the exciting temperature. The rate of heat transfer is generally enhanced in the case of sinusoidal heating. Also, the resonance phenomenon existence, characterized by maximum fluctuations in flow intensity and heat transfer, is proved in this study. 展开更多
关键词 Natural Convection Thermal Radiation Heatlines Cross gradients of temperature Periodic Heating Resonant Heat Transfer Numerical Study
下载PDF
Microstructural evolution and mechanical properties of Ti-5Al-5Mo-5V-3Cr alloy by heat treatment with continuous temperature gradient 被引量:5
18
作者 徐圣航 刘咏 +2 位作者 刘彬 王鑫 陈智星 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第2期273-281,共9页
A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was ind... A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys. 展开更多
关键词 Ti-5Al-5Mo-5V-3Cr alloy high throughput method pseudo-spinodal decomposition temperature gradient microstructure mechanical properties
下载PDF
Experimental study of temperature gradient in track slab under outdoor conditions in Chengdu area 被引量:12
19
作者 Pingrui Zhao Xueyi Liu Guan Liu 《Journal of Modern Transportation》 2014年第3期148-155,共8页
Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built u... Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built under outdoor conditions in Chengdu area; the statistical characteristic of temperature gradient in track slab and the relationship between temperature gradient and surface air temperature were tested and analyzed. The results show that the track slab temperature gradient will vary periodically according to the surface air temperature, and show a clear nonlinearity along the height direction. The temperature gradient distribution is extremely uneven: the temperature gradient in the top part of the track slab is larger than that in the bottom part; the most frequently occurring temperature gradient of the track slab is around -3.5 ℃/m and more than 75 % locates in the level -10 to 10 ℃/m; concrete with a relatively good heat exchange condition with the surrounding air has a narrower band distribution. In addition, the frequency distribution histogram should exclude the time zone from 00:00 to 06:00 because there is almost no traffic in this period. The amplitude of track slab temperature variation is obviously lower than that of the air temperature variation, and the former is approximately linear with the latter. 展开更多
关键词 Slab track Track slab - temperature gradient temperature field Surface air temperature
下载PDF
Sulfidation roasting of lead and zinc carbonate with sulphur by temperature gradient method 被引量:6
20
作者 郑永兴 刘维 +4 位作者 覃文庆 焦芬 韩俊伟 杨康 罗虹霖 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1635-1642,共8页
In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction s... In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature,molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology. 展开更多
关键词 lead and zinc carbonate SULPHUR ROASTING temperature gradient PYROMETALLURGY
下载PDF
上一页 1 2 134 下一页 到第
使用帮助 返回顶部