In order to resolve the problems of machining non-axisymmetric aspheric lens,which is short of flexibility in mould grinding and needs high accuracy CNC machine center in globediamond wheel grinding, a new parallel gr...In order to resolve the problems of machining non-axisymmetric aspheric lens,which is short of flexibility in mould grinding and needs high accuracy CNC machine center in globediamond wheel grinding, a new parallel grinding method that utilizes common arc diamond wheel isput forward. Base on the approach calculation of machining locus, the advantages of parallelgrinding that machines non-axisymmetric aspheric lens by 2.5-axis CNC machine center have beenobtained. The results of grinding experiment show the new method can meet the need of grinding highaccuracy non-axisymmetric aspheric lens.展开更多
The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of ...The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations. The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed, and a numerical result is presented.展开更多
The roller movement trace for the 3D non-axisymmetric thin-walled tubes is a complex space curve. Besides the roller rotation caused by contact with the blank, the roller rotates around the workpiece together with the...The roller movement trace for the 3D non-axisymmetric thin-walled tubes is a complex space curve. Besides the roller rotation caused by contact with the blank, the roller rotates around the workpiece together with the main spindle, and also moves simultaneously along the direction of the revolution radius. The method to correctly establish the finite element (FE) models of the metal spinning is based on the MSC. MARC software was introduced. The calculation formulas considering both the revolution and rotation of the roller were obtained by the mathematical deduction. The saving calculation points m should be a multiple of 4 for one revolution of the roller around the workpiece to obtain the maximum forming force for the spinning of the 3D non-axisymmetric thin-walled tubes. The simulation results conform well to the experimental ones for several spinning methods; the maximum error is less than ±15%.展开更多
The reconstruction of emission coefficient is a key factor for the calculation of temperature field.However,most of the researches for determining arc plasmas are based on axisymmetric sources,little has been done to ...The reconstruction of emission coefficient is a key factor for the calculation of temperature field.However,most of the researches for determining arc plasmas are based on axisymmetric sources,little has been done to study non-axisymmetric arc plasmas.In order to reveal temperatures of a non-axisymmetric coupling arc,the distribution of emission coefficients must be reconstructed in advance.In this paper,the argon atomic line intensities of the coupling arc are obtained by using the imaging system that involves a high speed camera in conjunction with a neutral and a narrow-band filter.The converted programme between emission coefficients and emitted intensities is programmed based on MALDONADO's method.A displaced Gaussian model is used for evaluating the validity of the converted programme.Then,the emission coefficients of a free burning arc are reconstructed by MALDONADO's method and an Abel inversion,respectively,and good agreement is obtained.Finally,the emission coefficient profiles of the coupling arc are achieved.The results show that the distribution of emission coefficient for the coupling arc is non-axisymmetric.The emission coefficient profile is similar to an ellipse,and the short axis of the ellipse is in the direction that the two electrodes are arranged along.The peak temperature of the coupling arc is in the middle of both electrodes.There is a strong interaction between both arcs within the coupling arc.The proposed research solves difficulties for determining asymmetric arcs and enlarges the application scope of spectroscopic techniques.展开更多
Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whol...Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whole deformation. For the rotary forging process simulation, more researches were focused on simulating the simple stage forming process with axisymmetric part geometry. Whereas in this paper, the upper die is not cone-shaped, and the billet is non-axisymmetric. So the movement of the punch is much more complicated than ever. The 3D FEM simulation models for the preforming & final forming processes are set up aider carefully studying the complicated movement pattern. Deform-3D is used to simulate the material flow, and the boundary nodal resisting forces calculated by the final stage process simulation is used to analyze the final forming die strength. The CAE analysis of the die shows that the design of the final forming die is not reasonable with lower pre-stress which is easy to crack at the critical corners. An optimum die design is also provided with higher pre-stress, and verified by CAE analysis.展开更多
This paper presents an analytical solution of a thick walled cylinder composed of a functionally graded piezoelectric material (FGPM) and subjected to a uniform electric field and non-axisymmetric thermo-mechanical ...This paper presents an analytical solution of a thick walled cylinder composed of a functionally graded piezoelectric material (FGPM) and subjected to a uniform electric field and non-axisymmetric thermo-mechanical loads. All material properties, except Poisson's ratio that is assumed to be constant, obey the same power law. An exact solution for the resulting Navier equations is developed by the separation of variables and complex Fourier series. Stress and strain distributions and a displacement field through the cylinder are obtained by this technique. To examine the analytical approach, different examples are solved by this method, and the results are discussed.展开更多
On the basis of both the general theory[1,2]and the finite element method[4]of perforated thin plates with large deflection,the buckling and post-buckling of annular plates under non-axisymmetric plane edge forces are...On the basis of both the general theory[1,2]and the finite element method[4]of perforated thin plates with large deflection,the buckling and post-buckling of annular plates under non-axisymmetric plane edge forces are studied.展开更多
Non-axisymmetric endwall is numerically investigated to suppress the secondary endwall flow in a HP turbine suction surface.The endwall contour is represented by a non-uniform rational B-spline surface.Two solution sp...Non-axisymmetric endwall is numerically investigated to suppress the secondary endwall flow in a HP turbine suction surface.The endwall contour is represented by a non-uniform rational B-spline surface.Two solution spaces are designed by the rule of hypercube sampling through variation of nodal radial extension.Final most effective endwall contour is obtained through screening all available samples with surrogate-based model.Results show that non axisymmetric endwall reduces the turbulence kinetic energy of the passage vortex by 5.5%and the total pressure loss 1.6%.Local heat transfer coefficient is lowered on the afore passage endwall surface with a certain increment on the aft passage endwall.Overall averaged heat transfer coefficient is reduced.展开更多
Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential ...Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical, the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor's performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor's peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the nonaxisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multifrequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.展开更多
An investigation is described for instability problem of flow through a pipe of circular cross section. As a disturbance motion, we consider a general non-axisym-metric mode. An associated amplitude or modulation equa...An investigation is described for instability problem of flow through a pipe of circular cross section. As a disturbance motion, we consider a general non-axisym-metric mode. An associated amplitude or modulation equation has been derived for this disturbance motion. This equation belongs to a diffusion type.The coefficient of it can be negative while Reynolds number increases, because of the complex interaction between molecular diffusion and convection. The negative diffusivity, when it occurs, causes a concentration and focussing of energy within decaying slugs, acting as a role of reversing natural decays.展开更多
Current work proposes a novel design methodology using curve-fitting approach for a non-axisymmetric airfoil convergent nozzle used in small-sized cryogenic turboexpander.The curves used for designing the nozzle are b...Current work proposes a novel design methodology using curve-fitting approach for a non-axisymmetric airfoil convergent nozzle used in small-sized cryogenic turboexpander.The curves used for designing the nozzle are based on a combination of fifth and third order curve at upper and lower surface respectively.Four different turbulence model such as k-ε,SST,BSL and SSG Reynolds stress turbulence model is used to visualize and compare the fluid flow characteristics and thermal behaviors at various cross-sections.It is interesting to observe that the Mach number obtained at the outlet of the nozzle is highest and temperature drop is maximum for SSG model under similar boundary conditions.It is also observed that the designed nozzle with curve fitting approach is appropriate for impulse type turbine with a small amount of reaction.The key feature of this implementation is to obtain subsonic velocity at the nozzle exit and reduce the irreversible losses through the nozzle,which can affect the performance of a turboexpander.展开更多
Non-Axisymmetric Endwall Profiling(NAEP) is commonly utilized in turbines to eliminate secondary flows.Nevertheless,most of the NAEP methods consider a single-blade row environment without incorporating the effect of ...Non-Axisymmetric Endwall Profiling(NAEP) is commonly utilized in turbines to eliminate secondary flows.Nevertheless,most of the NAEP methods consider a single-blade row environment without incorporating the effect of the stage environment.This paper aims to investigate the influence mechanism of the incoming vortex on the endwall secondary flow structures of NAEP in a highly loaded turbine cascade.To model the incoming vortex in a stage environment,this study considers a half-delta wing as the vortex generator at the upstream of the turbine cascade.The NAEP is then carried out for a highly loaded turbine cascade with an in-house numerical optimization design platform subject to no incoming vortex.Numerical simulation is also carried out under the influence of the incoming vortex for the turbine cascades with both planar and non-axisymmetric endwall.This paper furthers investigated the pitchwise effect of the incoming vortex on the near endwall secondary flow.The results indicate that the NAEP effectively improves the endwall secondary flow of the turbine cascade,where the total pressure loss coefficient and the secondary kinetic energy(SKE) are reduced by 7.3%,and 45.7%,respectively.It is further seen that with the incoming vortex,the NAEP achieves a considerable control effect on the endwall secondary flow of the turbine cascade.With incoming vortex,the NAEP can still achieve considerable control effect on the endwall secondary flow of the turbine cascade;the averaged reductions of loss coefficient and SKE are 7.8% and 14.2%,respectively.Under some pitchwise locations,incoming vortex can suppress the convection of cross-passage flow toward the suction corner greatly and reduce the loss coefficient of the baseline cascade.The incoming vortex at 4/7 pitch impinged right at the blade leading edge,leading to the generation of low-momentum fluid,which increased the size and the strength of the horseshoe vortex.Under all the pitchwise locations,NAEP can suppress the secondary vortices,e.g.,the passage vortex and the counter vortex,considerably.展开更多
In two recent papers,approximate solutions for compact non-axisymmetric contact problems of homogeneous and power-law graded elastic bodies have been suggested,which provide explicit analytical relations for the force...In two recent papers,approximate solutions for compact non-axisymmetric contact problems of homogeneous and power-law graded elastic bodies have been suggested,which provide explicit analytical relations for the force–approach relation,the size and the shape of the contact area,as well as for the pressure distribution therein.These solutions were derived for profiles,which only slightly deviate from the axisymmetric shape.In the present paper,they undergo an extensive testing and validation by comparison of solutions with a great variety of profile shapes with numerical solutions obtained by the fast Fourier transform(FFT)-assisted boundary element method(BEM).Examples are given with quite significant deviations from axial symmetry and show surprisingly good agreement with numerical solutions.展开更多
The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. Both Euler throughflow model and ...The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. Both Euler throughflow model and Navier-Stokes (N-S) throughflow model are employed to investigate the performance and flow fields of a highly loaded transonic single-stage fan ATS-2 and a four-stage fan. The results are compared with the experimental and three-dimensional computational results. It shows that the throughflow models can provide reasonable perform- ance characteristics and N-S throughflow model gives better predictions in endwall regions. A throughflow com- putation in which all the non-axisymmetric terms are included has been performed at off-design condition and the radial distributions of the flow field can be well described.展开更多
The complex 3D flow in a steam turbine exhaust hood model with different inlet swirl and inlet total pressure radial distributions has been simulated by employing CFX-5 and analyzed in this paper. It's found that the...The complex 3D flow in a steam turbine exhaust hood model with different inlet swirl and inlet total pressure radial distributions has been simulated by employing CFX-5 and analyzed in this paper. It's found that the inlet tangential flow angle at hub has a negative effect on the exhaust hood performance, while a negative gradient of inlet total pressure radial distribution has a positive impact on the hood performances. It's also numerically con- firmed that a proper distribution of total pressure at hood inlet can successfully eliminate the negative effects caused by the inappropriate inlet swirl distribution and improve the hood aerodynamic performance.展开更多
The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to s...The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions.The results show that the pressure distribution in volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream,which results in the non-axisymmetric flow inside the compressor.The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition,its effect on the upstream flow field is also stronger.Additionally,the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet.In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different.Meanwhile,the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow.The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel,while the low static pressure zone of the volute corresponds to the increase of the mass flow.In small flow condition,the mass flow difference in the blade channel is bigger than that in the large flow condition.展开更多
The major source of loss in modem compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial ...The major source of loss in modem compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial compressors is differ from turbines, the effects of non-axisymmetric endwall to axial compressors requires flow analysis in detail. This paper presents both experimental and numerical data to deal with the application of a non-axisymmetric hub endwall in a high-subsonic axial-flow compressor. The aims of the experiment here were to make sure the numerically obtained flow fields is the physical mechanism responsible for the improvement in efficiency, due to the non-axisymmetric hub endwall. The computational results were first compared with avail- able measured data of axisymmetric hub endwall. The results agreed well with the experimental data for estima- tion of the global performance. The coupled flow of the compressor rotor with non-axisymmetric hub endwall was simulated by a state-of-the-art multi-block flow solver. The non-axisymmetric hub endwall was designed for a subsonic compressor rotor with the help of sine and cosine functions. This type of non-axisymmetric hub end- wall was found to have a significant improvement in efficiency of 0.45% approximately and a slightly increase for the total pressure ratio. The fundamental mechanisms of non-axisymmetric hub endwall and their effects on the subsonic axial-flow compressor endwall flow field were analyzed in detail. It is concluded that the non-axisymmetric endwall profiling, though not optimum, can mitigate the secondary flow in the vicinity of the hub endwall, resulting in the improvement of aerodynamic performance of the compressor rotor.展开更多
As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103...As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103,the study found the optimal non-axisymmetric profiled end wall decreases total pressure loss coefficient by 4.57%,5.48%and 3.04%under incidences of–3°,0°,and 3°,respectively,compared with those of the planar end wall.The optimal non-axisymmetric profiled end wall changes the structure of secondary flow in hub region,generating a corner vortex near suction surface,inhibiting the development of the passage vortex towards suction surface and reducing flow separation.When the inlet Mach numbers are 0.62 and 0.72,the total pressure loss coefficient decreases by 3.19%and 4.58%for optimal non-axisymmetric profiled end wall compared with those of the planar end wall.Though optimal non-axisymmetric profiled end wall increases total pressure loss near hub region in blade passage under different inlet Mach numbers,the peak value and region of high loss coefficient above 10%span in blade passage significantly decrease.In addition,different incidences affect the secondary flow streamlines and vortex structure near the cascade hub region,however,different inlet Mach numbers hardly change the secondary flow streamlines and vortex structure.In short,the optimal non-axisymmetric profiled end wall shows better aerodynamic performance than the planar end wall for the highly loaded compressor cascade in multi-conditions.展开更多
Inlet total pressure distortion has great adverse effects on the aero-engine performance. The distorted flow passes through the compressor and becomes non-uniform in the downstream blade rows. Different from previous ...Inlet total pressure distortion has great adverse effects on the aero-engine performance. The distorted flow passes through the compressor and becomes non-uniform in the downstream blade rows. Different from previous studies based on the assumption of circumferential uniformity, this study aims to improve circumferential non-uniform flow with the non-axisymmetric structure. Non-axisymmetric stator clearance was adopted to resolve the effects of non-uniform flow caused by inlet total pressure distortion in this paper. The 9 stators with tip clearance were installed in the distorted region and the flow field structure and performance under different operating conditions was studied. The study finds that the non-axisymmetric compressor with 9 tip clearance stators can ensure compressor efficiency while improving compressor stability margin. What’s more, the separation range and strength in the distorted region can be reduced significantly and the anti-distortion capability of compressor can be enhanced.展开更多
基金This project is supported by Provincial Foundation for Young Scientists & Scholars Innovation of Fujian, China (No.0013K13004).
文摘In order to resolve the problems of machining non-axisymmetric aspheric lens,which is short of flexibility in mould grinding and needs high accuracy CNC machine center in globediamond wheel grinding, a new parallel grinding method that utilizes common arc diamond wheel isput forward. Base on the approach calculation of machining locus, the advantages of parallelgrinding that machines non-axisymmetric aspheric lens by 2.5-axis CNC machine center have beenobtained. The results of grinding experiment show the new method can meet the need of grinding highaccuracy non-axisymmetric aspheric lens.
文摘The Blot's wave equations of transversely isotropic saturated poroelastic media excited hy non-axisymmetrical harmonic source were solved by means of Fourier expansion and Hankel transform. Then the components of total stress in porous media are expressed with the solutions of Biot's wave equations. The method of research on non-axisymmetrical dynamic response of saturated porous media is discussed, and a numerical result is presented.
基金This project was financially supported by the National Natural Science Foundation of China(No.50275054)the Provincial Natural Science Foundation of Guangdong(No.020923)the Industrial Science and Technology Development Program Foundation of Guangdong(No.2003C102013).
文摘The roller movement trace for the 3D non-axisymmetric thin-walled tubes is a complex space curve. Besides the roller rotation caused by contact with the blank, the roller rotates around the workpiece together with the main spindle, and also moves simultaneously along the direction of the revolution radius. The method to correctly establish the finite element (FE) models of the metal spinning is based on the MSC. MARC software was introduced. The calculation formulas considering both the revolution and rotation of the roller were obtained by the mathematical deduction. The saving calculation points m should be a multiple of 4 for one revolution of the roller around the workpiece to obtain the maximum forming force for the spinning of the 3D non-axisymmetric thin-walled tubes. The simulation results conform well to the experimental ones for several spinning methods; the maximum error is less than ±15%.
基金supported by National Natural Science Foundation of China (Grant Nos. 51175119,50775053)
文摘The reconstruction of emission coefficient is a key factor for the calculation of temperature field.However,most of the researches for determining arc plasmas are based on axisymmetric sources,little has been done to study non-axisymmetric arc plasmas.In order to reveal temperatures of a non-axisymmetric coupling arc,the distribution of emission coefficients must be reconstructed in advance.In this paper,the argon atomic line intensities of the coupling arc are obtained by using the imaging system that involves a high speed camera in conjunction with a neutral and a narrow-band filter.The converted programme between emission coefficients and emitted intensities is programmed based on MALDONADO's method.A displaced Gaussian model is used for evaluating the validity of the converted programme.Then,the emission coefficients of a free burning arc are reconstructed by MALDONADO's method and an Abel inversion,respectively,and good agreement is obtained.Finally,the emission coefficient profiles of the coupling arc are achieved.The results show that the distribution of emission coefficient for the coupling arc is non-axisymmetric.The emission coefficient profile is similar to an ellipse,and the short axis of the ellipse is in the direction that the two electrodes are arranged along.The peak temperature of the coupling arc is in the middle of both electrodes.There is a strong interaction between both arcs within the coupling arc.The proposed research solves difficulties for determining asymmetric arcs and enlarges the application scope of spectroscopic techniques.
文摘Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whole deformation. For the rotary forging process simulation, more researches were focused on simulating the simple stage forming process with axisymmetric part geometry. Whereas in this paper, the upper die is not cone-shaped, and the billet is non-axisymmetric. So the movement of the punch is much more complicated than ever. The 3D FEM simulation models for the preforming & final forming processes are set up aider carefully studying the complicated movement pattern. Deform-3D is used to simulate the material flow, and the boundary nodal resisting forces calculated by the final stage process simulation is used to analyze the final forming die strength. The CAE analysis of the die shows that the design of the final forming die is not reasonable with lower pre-stress which is easy to crack at the critical corners. An optimum die design is also provided with higher pre-stress, and verified by CAE analysis.
文摘This paper presents an analytical solution of a thick walled cylinder composed of a functionally graded piezoelectric material (FGPM) and subjected to a uniform electric field and non-axisymmetric thermo-mechanical loads. All material properties, except Poisson's ratio that is assumed to be constant, obey the same power law. An exact solution for the resulting Navier equations is developed by the separation of variables and complex Fourier series. Stress and strain distributions and a displacement field through the cylinder are obtained by this technique. To examine the analytical approach, different examples are solved by this method, and the results are discussed.
基金The Project supported by the State Education Commission of the People’s Republic of China
文摘On the basis of both the general theory[1,2]and the finite element method[4]of perforated thin plates with large deflection,the buckling and post-buckling of annular plates under non-axisymmetric plane edge forces are studied.
文摘Non-axisymmetric endwall is numerically investigated to suppress the secondary endwall flow in a HP turbine suction surface.The endwall contour is represented by a non-uniform rational B-spline surface.Two solution spaces are designed by the rule of hypercube sampling through variation of nodal radial extension.Final most effective endwall contour is obtained through screening all available samples with surrogate-based model.Results show that non axisymmetric endwall reduces the turbulence kinetic energy of the passage vortex by 5.5%and the total pressure loss 1.6%.Local heat transfer coefficient is lowered on the afore passage endwall surface with a certain increment on the aft passage endwall.Overall averaged heat transfer coefficient is reduced.
基金supported by the National Natural Science Foundation of China(50476003)Innovation Foundation of BUAA for Ph.D. Graduates
文摘Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical, the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor's performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor's peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the nonaxisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multifrequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.
文摘An investigation is described for instability problem of flow through a pipe of circular cross section. As a disturbance motion, we consider a general non-axisym-metric mode. An associated amplitude or modulation equation has been derived for this disturbance motion. This equation belongs to a diffusion type.The coefficient of it can be negative while Reynolds number increases, because of the complex interaction between molecular diffusion and convection. The negative diffusivity, when it occurs, causes a concentration and focussing of energy within decaying slugs, acting as a role of reversing natural decays.
文摘Current work proposes a novel design methodology using curve-fitting approach for a non-axisymmetric airfoil convergent nozzle used in small-sized cryogenic turboexpander.The curves used for designing the nozzle are based on a combination of fifth and third order curve at upper and lower surface respectively.Four different turbulence model such as k-ε,SST,BSL and SSG Reynolds stress turbulence model is used to visualize and compare the fluid flow characteristics and thermal behaviors at various cross-sections.It is interesting to observe that the Mach number obtained at the outlet of the nozzle is highest and temperature drop is maximum for SSG model under similar boundary conditions.It is also observed that the designed nozzle with curve fitting approach is appropriate for impulse type turbine with a small amount of reaction.The key feature of this implementation is to obtain subsonic velocity at the nozzle exit and reduce the irreversible losses through the nozzle,which can affect the performance of a turboexpander.
基金supported by National Science and Technology Major Project (J2019-Ⅱ-0011-0031)the foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research (No. D5150230005)+1 种基金the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (No.PF2023091)National Natural Science Foundation of China (No.51806174)。
文摘Non-Axisymmetric Endwall Profiling(NAEP) is commonly utilized in turbines to eliminate secondary flows.Nevertheless,most of the NAEP methods consider a single-blade row environment without incorporating the effect of the stage environment.This paper aims to investigate the influence mechanism of the incoming vortex on the endwall secondary flow structures of NAEP in a highly loaded turbine cascade.To model the incoming vortex in a stage environment,this study considers a half-delta wing as the vortex generator at the upstream of the turbine cascade.The NAEP is then carried out for a highly loaded turbine cascade with an in-house numerical optimization design platform subject to no incoming vortex.Numerical simulation is also carried out under the influence of the incoming vortex for the turbine cascades with both planar and non-axisymmetric endwall.This paper furthers investigated the pitchwise effect of the incoming vortex on the near endwall secondary flow.The results indicate that the NAEP effectively improves the endwall secondary flow of the turbine cascade,where the total pressure loss coefficient and the secondary kinetic energy(SKE) are reduced by 7.3%,and 45.7%,respectively.It is further seen that with the incoming vortex,the NAEP achieves a considerable control effect on the endwall secondary flow of the turbine cascade.With incoming vortex,the NAEP can still achieve considerable control effect on the endwall secondary flow of the turbine cascade;the averaged reductions of loss coefficient and SKE are 7.8% and 14.2%,respectively.Under some pitchwise locations,incoming vortex can suppress the convection of cross-passage flow toward the suction corner greatly and reduce the loss coefficient of the baseline cascade.The incoming vortex at 4/7 pitch impinged right at the blade leading edge,leading to the generation of low-momentum fluid,which increased the size and the strength of the horseshoe vortex.Under all the pitchwise locations,NAEP can suppress the secondary vortices,e.g.,the passage vortex and the counter vortex,considerably.
基金financial support from Deutsche Forschungsgemeinschaft(DFG)(Grant Nos.PO 810/66-1 and LI 3064/2-1)。
文摘In two recent papers,approximate solutions for compact non-axisymmetric contact problems of homogeneous and power-law graded elastic bodies have been suggested,which provide explicit analytical relations for the force–approach relation,the size and the shape of the contact area,as well as for the pressure distribution therein.These solutions were derived for profiles,which only slightly deviate from the axisymmetric shape.In the present paper,they undergo an extensive testing and validation by comparison of solutions with a great variety of profile shapes with numerical solutions obtained by the fast Fourier transform(FFT)-assisted boundary element method(BEM).Examples are given with quite significant deviations from axial symmetry and show surprisingly good agreement with numerical solutions.
基金supported by National Natural Science Foundation of China (50736007, 51006005)
文摘The governing equations are derived by circumferentially averaging the three-dimensional (3D) Navier-Stokes equations, which are solved using a time marching finite volume approach. Both Euler throughflow model and Navier-Stokes (N-S) throughflow model are employed to investigate the performance and flow fields of a highly loaded transonic single-stage fan ATS-2 and a four-stage fan. The results are compared with the experimental and three-dimensional computational results. It shows that the throughflow models can provide reasonable perform- ance characteristics and N-S throughflow model gives better predictions in endwall regions. A throughflow com- putation in which all the non-axisymmetric terms are included has been performed at off-design condition and the radial distributions of the flow field can be well described.
基金the National Natural Science Foundation of China (grant No.50336050)
文摘The complex 3D flow in a steam turbine exhaust hood model with different inlet swirl and inlet total pressure radial distributions has been simulated by employing CFX-5 and analyzed in this paper. It's found that the inlet tangential flow angle at hub has a negative effect on the exhaust hood performance, while a negative gradient of inlet total pressure radial distribution has a positive impact on the hood performances. It's also numerically con- firmed that a proper distribution of total pressure at hood inlet can successfully eliminate the negative effects caused by the inappropriate inlet swirl distribution and improve the hood aerodynamic performance.
基金sponsored by the National Natural Science Foundation of China(No.51276017)
文摘The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions.The results show that the pressure distribution in volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream,which results in the non-axisymmetric flow inside the compressor.The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition,its effect on the upstream flow field is also stronger.Additionally,the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet.In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different.Meanwhile,the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow.The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel,while the low static pressure zone of the volute corresponds to the increase of the mass flow.In small flow condition,the mass flow difference in the blade channel is bigger than that in the large flow condition.
基金Financial supports for the work presented are provided by National Natural Science Foundation of China (Project No: 50806073)China Postdoctoral Science Foundation (Project No: 20070420068)K C Wong Education Foundation, these supports are greatly appreciated
文摘The major source of loss in modem compressors is the secondary loss. Non-axisymmetric endwall profile contouring is now a well established design methodology in axial flow turbines. However, flow development in axial compressors is differ from turbines, the effects of non-axisymmetric endwall to axial compressors requires flow analysis in detail. This paper presents both experimental and numerical data to deal with the application of a non-axisymmetric hub endwall in a high-subsonic axial-flow compressor. The aims of the experiment here were to make sure the numerically obtained flow fields is the physical mechanism responsible for the improvement in efficiency, due to the non-axisymmetric hub endwall. The computational results were first compared with avail- able measured data of axisymmetric hub endwall. The results agreed well with the experimental data for estima- tion of the global performance. The coupled flow of the compressor rotor with non-axisymmetric hub endwall was simulated by a state-of-the-art multi-block flow solver. The non-axisymmetric hub endwall was designed for a subsonic compressor rotor with the help of sine and cosine functions. This type of non-axisymmetric hub end- wall was found to have a significant improvement in efficiency of 0.45% approximately and a slightly increase for the total pressure ratio. The fundamental mechanisms of non-axisymmetric hub endwall and their effects on the subsonic axial-flow compressor endwall flow field were analyzed in detail. It is concluded that the non-axisymmetric endwall profiling, though not optimum, can mitigate the secondary flow in the vicinity of the hub endwall, resulting in the improvement of aerodynamic performance of the compressor rotor.
基金supported by the National Natural Science Foundation of China(No.51606187 and No.51706223)the National Major Science and Technology Project of China(Grant No.2019-II-0004-0024)。
文摘As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103,the study found the optimal non-axisymmetric profiled end wall decreases total pressure loss coefficient by 4.57%,5.48%and 3.04%under incidences of–3°,0°,and 3°,respectively,compared with those of the planar end wall.The optimal non-axisymmetric profiled end wall changes the structure of secondary flow in hub region,generating a corner vortex near suction surface,inhibiting the development of the passage vortex towards suction surface and reducing flow separation.When the inlet Mach numbers are 0.62 and 0.72,the total pressure loss coefficient decreases by 3.19%and 4.58%for optimal non-axisymmetric profiled end wall compared with those of the planar end wall.Though optimal non-axisymmetric profiled end wall increases total pressure loss near hub region in blade passage under different inlet Mach numbers,the peak value and region of high loss coefficient above 10%span in blade passage significantly decrease.In addition,different incidences affect the secondary flow streamlines and vortex structure near the cascade hub region,however,different inlet Mach numbers hardly change the secondary flow streamlines and vortex structure.In short,the optimal non-axisymmetric profiled end wall shows better aerodynamic performance than the planar end wall for the highly loaded compressor cascade in multi-conditions.
基金supported by the National Natural Science Foundation of China(No.51576024,51436002)the Double First Class Construction Special Innovation Project of Dalian Maritime University(No.BSCXXM008)。
文摘Inlet total pressure distortion has great adverse effects on the aero-engine performance. The distorted flow passes through the compressor and becomes non-uniform in the downstream blade rows. Different from previous studies based on the assumption of circumferential uniformity, this study aims to improve circumferential non-uniform flow with the non-axisymmetric structure. Non-axisymmetric stator clearance was adopted to resolve the effects of non-uniform flow caused by inlet total pressure distortion in this paper. The 9 stators with tip clearance were installed in the distorted region and the flow field structure and performance under different operating conditions was studied. The study finds that the non-axisymmetric compressor with 9 tip clearance stators can ensure compressor efficiency while improving compressor stability margin. What’s more, the separation range and strength in the distorted region can be reduced significantly and the anti-distortion capability of compressor can be enhanced.