Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Consider...Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.展开更多
Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety c...Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety coefficient of the middle saddle, and improve the stress conditions of the middle pylon and decrease the deflection in the middle of the main girder, as well as the longitudinal displacement of the main girder caused by live loads. The anchorage boxes of the elastic cable are installed in the wind fairing outside the vertical web plate of the box girder. Two anchor boxes form a pair and are arranged parallelly. Eight anchor boxes are installed in the bridge. In this paper, the design scheme and the technical difficulties in manufacturing are briefly discussed with the precision control techniques.展开更多
Various kinds of deflection characteristics on the steel cable-stayed bridge(Nanjing No.3 Yangtze River Bridge)are investigated by different mathematical statistical methods.Firstly,via Pearson correlation coefficient...Various kinds of deflection characteristics on the steel cable-stayed bridge(Nanjing No.3 Yangtze River Bridge)are investigated by different mathematical statistical methods.Firstly,via Pearson correlation coefficient calculation,it shows good consistency between the adjacent measuring point of side span or middle span.Secondly,taking mid-span deflection as an example,the correlation analysis of deflection and temperature is conducted.They are synchronous via cross correlation coefficient calculation but not completely linear and a"hysteresis loop"phenomenon of three stages is formed.The fitting result on the monitoring data at day time is consistent with the numerical value through the application of unit temperature difference between the cable and girder and the positive temperature gradient of girder in the finite element model.And the temperature effect is considerable.Vehicle loads effect is obtained from wavelet analysis.The extracted curve can indirectly reflect the change of traffic loads.Finally,the structural damage is analyzed through the trend fusion on the deflection,cable force and visual inspection from 2006 to 2015.Relevant conclusions can provide a basis for management departments to carry out special detection.展开更多
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure...Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.展开更多
When the installation of cables and pipelines needs to go across rivers,bridges are usually adopted to support the cables and pipelines for crossing the rivers.The measure can make full use of the space resources and ...When the installation of cables and pipelines needs to go across rivers,bridges are usually adopted to support the cables and pipelines for crossing the rivers.The measure can make full use of the space resources and have no effect on the flow pattern of rivers.For this reason,analysis on the structural-type design of a large-span steel truss bridge specially used for cables has been performed.The numerical results indicate that the stayed-cable bridge with steel truss beam and concrete main tower has better performance and improved structural type caparisoned with that of the beam and arch bridges,and the construction of the major beam can be without the temporary support.展开更多
In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological con...In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.展开更多
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co...The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.展开更多
The design and construction of tall and slender steel structures is always challenging. This paper discusses several design aspects (structural information, analysis methods, applied loads, cost optimisation) and a ca...The design and construction of tall and slender steel structures is always challenging. This paper discusses several design aspects (structural information, analysis methods, applied loads, cost optimisation) and a case study regarding the design and construction of 10-m-tall windbreak panels for a Greek electricity producer. The purpose of the panels is to reduce wind turbulence and improve the performance of the electricity producer’s air-cooled condenser. In this case, the main wind load acts in the longitudinal direction, with friction inducing only a small amount of wind load in the transverse direction. The steel columns are constructed from 10-m-tall hot-rolled IPE 270 (S235) cross-sections, and are supported by cables in the longitudinal direction and bracing systems in the transverse direction. Concrete anchorages and concrete footings are used for the cables and steel columns, respectively. System optimisation is investigated in terms of the steel weight, cable length, and overall cost, and practical issues are explained regarding technical decisions. Furthermore, the construction details, construction methods, and cost estimation are discussed.展开更多
The remote monitoring system applied to the construction control and health monitoring of the Nanjing Third Yangtze River Bridge is introduced. The System makes it possible to get the structure capabilities and enviro...The remote monitoring system applied to the construction control and health monitoring of the Nanjing Third Yangtze River Bridge is introduced. The System makes it possible to get the structure capabilities and environmental parameters of the bridge at the predetermined moment. It sends the collected data over a long distance to an assigned position for display and analysis. The related methods and working condition of the wireless monitoring system are discussed. The measured data during 48 h are employed to determine the feasibility for the closure of the bridge.展开更多
In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has bee...In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges.展开更多
A6×19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory,simulating the actual working conditions in a coalmine.An electrochemical met...A6×19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory,simulating the actual working conditions in a coalmine.An electrochemical method was used to investigate the corrosion behavior of steel wires with different surface treatments of a corrosive acid solution.The results show that anode activation of steel wire mainly occurs during pre-corrosion,where the anode activation process of bare steel wires is the fastest as is their corresponding corrosion speed,while the anode activation process of oil coated steel wires and their corresponding corrosion speed are the lowest.During the intermediate and late immersion periods, a passive film is generated on the surface of steel wires,which are gradually damaged with the passage of time.Local pitting corrosion occurs easily on the surface of steel wires with a high-polarization potential. Suitable equivalent circuits were chosen to fit the electrochemical impedance spectroscopy(EIS)of steel wires over various corrosive times and different surface treatments,which indicate good fitting results. The double electrical layer charge-transfer resistance increases in the sequence:bare steel wire, untreated steel wire and oil coated steel wire and their corrosion resistance decreases in turn,which is consistent with their polarization curves.The oil layer provides a certain protective effect on untreated steel wires,but its effect is not entirely clear.展开更多
文摘Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02)
文摘Taizhou Yangtze River Highway Bridge is a large span suspension bridge with three pylons. The elastic cables are installed to connect the steel tower and the steel box girder. The constraints can increase the safety coefficient of the middle saddle, and improve the stress conditions of the middle pylon and decrease the deflection in the middle of the main girder, as well as the longitudinal displacement of the main girder caused by live loads. The anchorage boxes of the elastic cable are installed in the wind fairing outside the vertical web plate of the box girder. Two anchor boxes form a pair and are arranged parallelly. Eight anchor boxes are installed in the bridge. In this paper, the design scheme and the technical difficulties in manufacturing are briefly discussed with the precision control techniques.
基金supported by the National Natural Science Foundation of China(Nos.51208096,51808301)
文摘Various kinds of deflection characteristics on the steel cable-stayed bridge(Nanjing No.3 Yangtze River Bridge)are investigated by different mathematical statistical methods.Firstly,via Pearson correlation coefficient calculation,it shows good consistency between the adjacent measuring point of side span or middle span.Secondly,taking mid-span deflection as an example,the correlation analysis of deflection and temperature is conducted.They are synchronous via cross correlation coefficient calculation but not completely linear and a"hysteresis loop"phenomenon of three stages is formed.The fitting result on the monitoring data at day time is consistent with the numerical value through the application of unit temperature difference between the cable and girder and the positive temperature gradient of girder in the finite element model.And the temperature effect is considerable.Vehicle loads effect is obtained from wavelet analysis.The extracted curve can indirectly reflect the change of traffic loads.Finally,the structural damage is analyzed through the trend fusion on the deflection,cable force and visual inspection from 2006 to 2015.Relevant conclusions can provide a basis for management departments to carry out special detection.
文摘Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.
文摘When the installation of cables and pipelines needs to go across rivers,bridges are usually adopted to support the cables and pipelines for crossing the rivers.The measure can make full use of the space resources and have no effect on the flow pattern of rivers.For this reason,analysis on the structural-type design of a large-span steel truss bridge specially used for cables has been performed.The numerical results indicate that the stayed-cable bridge with steel truss beam and concrete main tower has better performance and improved structural type caparisoned with that of the beam and arch bridges,and the construction of the major beam can be without the temporary support.
文摘In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.
基金Project(2010-K2-8)supported by Science and Technology Program of the Ministry of Housing and Urban Rural Development,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.
文摘The design and construction of tall and slender steel structures is always challenging. This paper discusses several design aspects (structural information, analysis methods, applied loads, cost optimisation) and a case study regarding the design and construction of 10-m-tall windbreak panels for a Greek electricity producer. The purpose of the panels is to reduce wind turbulence and improve the performance of the electricity producer’s air-cooled condenser. In this case, the main wind load acts in the longitudinal direction, with friction inducing only a small amount of wind load in the transverse direction. The steel columns are constructed from 10-m-tall hot-rolled IPE 270 (S235) cross-sections, and are supported by cables in the longitudinal direction and bracing systems in the transverse direction. Concrete anchorages and concrete footings are used for the cables and steel columns, respectively. System optimisation is investigated in terms of the steel weight, cable length, and overall cost, and practical issues are explained regarding technical decisions. Furthermore, the construction details, construction methods, and cost estimation are discussed.
基金The National Natural Science Foundationof China (No.50278079)
文摘The remote monitoring system applied to the construction control and health monitoring of the Nanjing Third Yangtze River Bridge is introduced. The System makes it possible to get the structure capabilities and environmental parameters of the bridge at the predetermined moment. It sends the collected data over a long distance to an assigned position for display and analysis. The related methods and working condition of the wireless monitoring system are discussed. The measured data during 48 h are employed to determine the feasibility for the closure of the bridge.
文摘In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges.
基金supported by the National Natural Science Foundation of China(No.50875252)the Program for New Century Excellent Talents in University(No.NCET-06-0479).
文摘A6×19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory,simulating the actual working conditions in a coalmine.An electrochemical method was used to investigate the corrosion behavior of steel wires with different surface treatments of a corrosive acid solution.The results show that anode activation of steel wire mainly occurs during pre-corrosion,where the anode activation process of bare steel wires is the fastest as is their corresponding corrosion speed,while the anode activation process of oil coated steel wires and their corresponding corrosion speed are the lowest.During the intermediate and late immersion periods, a passive film is generated on the surface of steel wires,which are gradually damaged with the passage of time.Local pitting corrosion occurs easily on the surface of steel wires with a high-polarization potential. Suitable equivalent circuits were chosen to fit the electrochemical impedance spectroscopy(EIS)of steel wires over various corrosive times and different surface treatments,which indicate good fitting results. The double electrical layer charge-transfer resistance increases in the sequence:bare steel wire, untreated steel wire and oil coated steel wire and their corrosion resistance decreases in turn,which is consistent with their polarization curves.The oil layer provides a certain protective effect on untreated steel wires,but its effect is not entirely clear.