Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ...Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.展开更多
A multicomponent thermal multi-relaxation-time(MRT)lattice Boltzmann method(LBM)is presented to study collapsing cavitation bubble.The simulation results satisfy Laplace law and the adiabatic law,and are consistent wi...A multicomponent thermal multi-relaxation-time(MRT)lattice Boltzmann method(LBM)is presented to study collapsing cavitation bubble.The simulation results satisfy Laplace law and the adiabatic law,and are consistent with the numerical solution of the Rayleigh-Plesset equation.To study the effects of the non-condensable gas inside bubble on collapsing cavitation bubble,a numerical model of single spherical bubble near a solid wall is established.The temperature and pressure evolution of the two-component two-phase flow are well captured.In addition,the collapse process of the cavitation bubble is discussed elaborately by setting the volume fractions of the gas and vapor to be the only variables.The results show that the non-condensable gas in the bubble significantly affects the pressure field,temperature field evolution,collapse velocity,and profile of the bubble.The distinction of the pressure and temperature on the wall after the second collapse becomes more obvious as the non-condensable gas concentration increases.展开更多
Nowadays,the limits on greenhouse gas emissions are becoming increasingly stringent.In present research,a two-dimensional numerical model was established to simulate the deep removal of 1,1,1,2-tetrafluoroethane(R134a...Nowadays,the limits on greenhouse gas emissions are becoming increasingly stringent.In present research,a two-dimensional numerical model was established to simulate the deep removal of 1,1,1,2-tetrafluoroethane(R134a)from the non-condensable gas(NCG)mixture by cryogenic condensation and de-sublimation.The wall condensation method was compiled into the Fluent software to calculate the condensation of R134a from the gas mixture.Besides,the saturated thermodynamic properties of R134a under its triple point were extrapolated by the equation of state.The simulation of the steam condensation with NCG was conducted to verify the validity of the model,the results matched well with the experimental data.Subsequently,the condensation characteristics of R134a with NCG and the thermodynamic parameters affecting condensation were studied.The results show that the section with relatively higher removal efficiency is usually near the inlet.The cold wall temperature has a great influence on the R134a removal performance,e.g.,a 15 K reduction of the wall temperature brings a reduction in the outlet R134a molar fraction by 85.43%.The effect of changing mass flow rate on R134a removal is mainly reflected at the outlet,where an increase in mass flow rate of 12.6% can aggravate the outlet molar fraction to 210.3% of the original.The research can provide a valuable reference for the simulation of the deep removal of various low-concentration gas using condensation and de-sublimation methods.展开更多
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe...An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.展开更多
The volatile chemical components of Radix Paeoniae Rubra (RPR) were analyzed by gas chromatography-mass spectrometry with the method of heuristic evolving latent projections and overall volume integration. The results...The volatile chemical components of Radix Paeoniae Rubra (RPR) were analyzed by gas chromatography-mass spectrometry with the method of heuristic evolving latent projections and overall volume integration. The results show that 38 volatile chemical components of RPR are determined, accounting for 95.21% of total contents of volatile chemical components of RPR. The main volatile chemical components of RPR are (Z, Z)-9,12-octadecadienoic acid, n-hexadecanoic acid, 2-hydroxy- benzaldehyde, 1-(2-hydroxy-4-methoxyphenyl)-ethanone, 6,6-dimethyl-bicyclo[3.1.1] heptane-2-methanol, 4,7-dimethyl-benzofuran, 4-(1-methylethenyl)-1-cyclohexene-1-carboxaldehyde, and cyclohexadecane.展开更多
Volatile components from Rhizoma Alpiniae Officinarum were respectively extracted by three methods including hydrodistillation, headspace solid-phase microextraction (HS-SPME) and diethyl ether extraction. A total o...Volatile components from Rhizoma Alpiniae Officinarum were respectively extracted by three methods including hydrodistillation, headspace solid-phase microextraction (HS-SPME) and diethyl ether extraction. A total of 40 (hydrodistillation), 32 (HS-SPME) and 37 (diethyl ether extraction) compounds were respectively identified by gas chromatography-mass spectrometry (GC/MS) and 22 compounds were overlapped, including β-farnesene, 7-muurolene, 2,6-dimethyl-6- (4-methyl-3-pentenyl)bicyclo[3.1.1]hept-2-ene, eucalyptol and cadina-1(10), 4-diene and so forth, varying in relative contents. HS-SPME is fast, sample saving and solvent-free and it also can achieve similar profiles as those from hydrodistillation and solvent extraction. Therefore, it can be the priority for extracting volatile components from medicinal plants.展开更多
Chromatography-mass spectrometry(GC-MS)was used to analyze the volatile components of cut tobacco samples with the help of heuristic evolving latent projections(HELP).After extracting with simultaneous distillation an...Chromatography-mass spectrometry(GC-MS)was used to analyze the volatile components of cut tobacco samples with the help of heuristic evolving latent projections(HELP).After extracting with simultaneous distillation and extraction method,the volatile components in cut tobacco were detected by GC-MS.Then the obtained original two-dimensional data were resolved into pure mass spectra and chromatograms.The qualitative analysis was performed by similarity searches in the national institute of standards and technology(NIST)mass database with the obtained pure mass spectrum of each component and the quantitative results were obtained by calculating the volume of total two-way response.The accuracy of qualitative and quantitative results were greatly improved by using the two-dimensional comprehensive information of chromatograms and mass spectra.107 of 141 separated constituents in the total ion chromatogram of the volatile components were identified and quantified,accounting for about 88.01% of the total content.The result proves that the developed method is powerful for the analysis of complex cut tobacco samples.展开更多
Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at consta...Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at constant temperature but different equilibrium pressure conditions. Based on these experimental results, the temporal evolution of component fractionation in the field was investigated. The results show that the CO2 concentration in the adsorbed phase is always greater than that in the original gas mixture during the desorption process, while CH4 shows the opposite characteristics. This has confirmed that CO2 , with a greater adsorption ability has a predominant position in the competition with CH4 under different pressures. Where gas drainage is employed, the ratio of CO2 to CH4 varies with time and space in floor roadways used for gas drainage, and in the ventilation air in Nos.1 and 2 coal seams, which is consistent with laboratory results.展开更多
Volatile components of Fuzhou Yulu, a Chinese fish sauce, were analyzed by gas chromatography-mass spectrometry (GC-MS), and two pretreatment methods, i.e., purge and trap (P&T) GC-MS and ethyl acetate extraction...Volatile components of Fuzhou Yulu, a Chinese fish sauce, were analyzed by gas chromatography-mass spectrometry (GC-MS), and two pretreatment methods, i.e., purge and trap (P&T) GC-MS and ethyl acetate extraction followed by GC-MS, were compared. P&T-GC-MS method determined 12 components, including sulfur-containing constituents (such as dimethyl disulfide), nitrogen-containing constituents (such as pyrazine derivatives), aldehydes and ketones. Ethyl acetate extraction fol- lowed by GC-MS method detected 10 components, which were mainly volatile organic acids (such as benzenepropanoic acid) and esters. Neither of the two methods detected alcohols or trimethylamine. This study offers an important reference to determine volatile flavor components of traditional fish sauce through modem analysis methods.展开更多
The ultrasonic nebulization extraction(UNE) was developed and applied to the extraction of volatile components from traditional Chinese patent medicine Xiaoyao Pills. Several parameters of ultrasonic nebulization ex...The ultrasonic nebulization extraction(UNE) was developed and applied to the extraction of volatile components from traditional Chinese patent medicine Xiaoyao Pills. Several parameters of ultrasonic nebulization extraction including the sample particle size, solvent volume, extraction time and ultrasonic power were studied and selected. As a result, 2.4 g of sample with particle size of 80 mesh was extracted with 15 mL of n-hexane for 20 min at an ultrasonic power of 35 W. The volatile components were analyzed by gas chromatography-mass spectrometry (GC-MS) under the optimal conditions and 57 compounds were identified. The precision, repeatability and stability of the proposed method were also studied. Compared with ultrasonic-assisted extraction(UAE) and hydrodistillation(HD) extraction, the proposed method is more efficient, faster and easier to be operated at room temperature with smaller sample and energy consumption. It is suggested that the ultrasonic nebulization extraction can be used as a novel alternative method for the extraction of volatile components from traditional Chinese patent medicine.展开更多
Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro...Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro-extraction gas chromatography/mass spectrometry(HS-SPME-GC/MS),was elaborated and further employed to holistically compare the compositional difference of the volatile components simultaneously from 12 Panax herbal medicines,which included P.ginseng(PG),P.quinquefolius(PQ),P.notoginseng(PN),red ginseng(PGR),P.ginseng leaf(PGL),P.quinquefolius leaf(PQL),P.notoginseng leaf(PNL),P.ginseng flower(PGF),P.quinquefolius flower(PQF),P.notoginseng flower(PNF),P.japonicus(PJ),and P.japonicus var.major(PJvm).Chromatographic separation was performed on an HP-5MS elastic quartz capillary column using helium as the carrier gas,enabling good resolution within 1 h.We were able to characterize totally 259 volatile compounds,including 82 terpenes(T),46 alcohols(Alc),29 ketones(K),25 aldehydes(Ald),21 esters(E),and the others.By analyzing 90 batches of ginseng samples based on the untargeted metabolomics workflows,236 differential ions were unveiled,and accordingly 36 differential volatile components were discovered.It is the first report that simultaneously compares the compositional difference of volatile components among 12 Panax herbal medicines,and useful information is provided for the quality control of ginseng aside from the well-known ginsenosides.展开更多
A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted ...A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust.展开更多
[Objectives]To compare the effects of molecular distillation on the flavor and antitumor activity of Ganoderma lucidum spore oil.[Methods]G.lucidum spore oil was separated and purified by molecular distillation techno...[Objectives]To compare the effects of molecular distillation on the flavor and antitumor activity of Ganoderma lucidum spore oil.[Methods]G.lucidum spore oil was separated and purified by molecular distillation technology,and the volatile components of different components of molecular distillation were analyzed by gas chromatography-ion mobility spectrometry(GC-IMS)technology.Human liver carcinoma cells(HepG2),human breast cancer cells(MCF-7),and human cervical cancer cells(Hela)were selected as the tumor cell lines to be tested,and the cell viability was detected by the MTT assay.[Results]Molecular distillation effectively reduced small molecular substances produced by oil oxidation in G.lucidum spore oil,such as heptanal,octanal,linalool,hexanal,E-2-octanal,3-ethylpyridine,etc.Among the heavy components,the content of esters was relatively high,mainly including ethyl levulinate,ethyl crotonate,and amyl butyrate.The MTT cytotoxicity test indicated that G.lucidum spore oil and its molecular distillation components had certain inhibitory effects on the growth of three tumor cells,and G.lucidum spore oil crude oil had the most significant antitumor activity.G.lucidum spore oil crude oil,heavy component,and light component had the most significant antitumor activity on HepG2 cells,followed by MCF-7 cells,and the weakest antitumor activity on Hela cells.The quality of G.lucidum spore oil became higher after molecular distillation,and the rancid smell was reduced,and molecular distillation had little effect on the antitumor activity of G.lucidum spores.[Conclusions]Molecular distillation technology can be applied to the refining of G.lucidum spore oil to improve product quality.展开更多
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f...Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.展开更多
The Enhanced Geothermal System(EGS) is a recognized geothermal exploitation system for hot dry rock(HDR), which is a rich resource in China. In this study, a numerical simulation method is used to study the effects of...The Enhanced Geothermal System(EGS) is a recognized geothermal exploitation system for hot dry rock(HDR), which is a rich resource in China. In this study, a numerical simulation method is used to study the effects of geothermal fluid dryness and non-condensable gas content on the specific enthalpy of geothermal fluid. Combined with the organic Rankine cycle(ORC), a numerical model is established to ascertain the difference in power generation caused by geothermal fluid dryness and non-condensable gas content. The results show that the specific enthalpy of geothermal fluid increases with the increase of geothermal fluid temperature and geothermal fluid dryness. If the dryness of geothermal fluid is ignored, the estimation error will be large for geothermal fluid enthalpy. Ignoring non condensable gas will increase the estimation of geothermal fluid enthalpy, so the existence of the non-condensable gas tends to reduce the installed capacity of a geothermal power plant. Additionally, both mass flow of the working medium and net power output of the ORC power generation system are increased with increasing dryness of geothermal fluid, however there is some impact of geothermal fluid dryness on thermal efficiency.展开更多
We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consid...We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.展开更多
[Objective]The aim was to explore the active compound of Morus alba leaves with the analysis of active components of hexane extractives of M.alba leaves.[Method]Antibacterial assays of hexane extractives of M.alba lea...[Objective]The aim was to explore the active compound of Morus alba leaves with the analysis of active components of hexane extractives of M.alba leaves.[Method]Antibacterial assays of hexane extractives of M.alba leaves were done and the volatile components of hexane extractives of M.alba leaves with the strongest antibacterial activity were analyzed by gas chromatography-mass spectrometry(GC-MS).[Result]The results of inhibitory effect of hexane extractives of M.alba leaves on Staphylococcus aureus and Escherichia coli showed that hexane extractives of M.alba leaves collected in June,July and August had antibacterial activity against S.aureus and had no antibacterial effect against E.coli.Furthermore,hexane extractives of M.alba leaves collected in June had the strongest antibacterial activity against S.aureus(inhibition diameter 10.95 mm).The hexane extractives of M.alba leaves collected in June was analyzed by GC-MS,the main volatile components were tetradecane(16.76%),dodecane(13.20%),diisobutyl phthalate(10.26%),decane(9.10%),hexadecane(8.71%),linolenyl alcohol(7.25%),octadecane(5.88%),eicosane(3.26%),dibutyl phthalate(2.59%).[Conclusion]Linolenyl alcohol was the potential antibacterial compound.展开更多
[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) com...[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.展开更多
Carrot juice was fermented by probiotic Lactobacillus casei( CTCF-LC1) and Lactobacillus reuteri( CTCF-LT1) with sensory score as the main evaluation index,and the fermentation process was optimized by single factor a...Carrot juice was fermented by probiotic Lactobacillus casei( CTCF-LC1) and Lactobacillus reuteri( CTCF-LT1) with sensory score as the main evaluation index,and the fermentation process was optimized by single factor and response surface experiments.The optimum ratio of fermentative strains CTCF-LC1∶ CTCF-LT1 was 1∶ 1,fermentation time was 8 h,inoculum size was 3.1% and fermentation temperature was26.6℃.Under the optimum conditions,the sensory score of fermented carrot juice was 91.3,pH was 4.50,total acid content was 3.73 g/L,total sugar content was 54.25 g/L,and reducing sugar content was 28.41 g/L.The carrot juice has bright orange color and stable state.It not only has the fresh flavor of fruit and vegetable juice,but also has the unique aroma from lactic acid bacteria fermentation,as well as soft and even taste,moderate acidity and sweetness.The changes of aroma components of carrot juice before and after fermentation were analyzed by headspace solid phase microextraction( HSPME) coupled with gas chromatography-mass spectrometry( GC-MS).After fermentation,substances with medicinal flavor components were reduced,and a lot of floral and fruit-scented substances were produced,such as methyl myristate,β-pinene,phenylethanol,and geraniol.Therefore,the results of this study can provide a theoretical basis for the development of fermented fruit and vegetable juice products with unique flavor substances.展开更多
Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimen...Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimensional accuracy and in-service properties are essential to fulfill the high-performance standards required in new transportation systems,which brings new challenges to titanium alloy forming technologies.Traditional forming processes,such as superplastic forming or hot pressing,cannot meet all demands of modern applications due to their limited properties,low productivity and high cost.This has encouraged industry and research groups to develop novel high-efficiency forming processes.Hot gas pressure forming and hot stamping-quenching technologies have been developed for the manufacture of tubular and panel components,and are believed to be the cut-edge processes guaranteeing dimensional accuracy,microstructure and mechanical properties.This article intends to provide a critical review of high-efficiency titanium alloy forming processes,concentrating on latest investigations of controlling dimensional accuracy,microstructure and properties.The advantages and limitations of individual forming process are comprehensively analyzed,through which,future research trends of high-efficiency forming are identified including trends in process integration,processing window design,full cycle and multi-objective optimization.This review aims to provide a guide for researchers and process designers on the manufacture of thin-walled titanium alloy components whilst achieving high dimensional accuracy and satisfying performance properties with high efficiency and low cost.展开更多
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of Sinopec.
文摘Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874140 and 11574072)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201913)+3 种基金the National Key Research and Development Program of China(Grant No.2016YFC0401600)the Primary Research and Development Plan of Jiangsu Province,China(Grant No.BE2016056)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant Nos.2018B741X14 and KYCX180552)the Postgraduate Research&Practice Innovation Program of Changzhou Campus,Hohai University,China(Grant No.17B01110)。
文摘A multicomponent thermal multi-relaxation-time(MRT)lattice Boltzmann method(LBM)is presented to study collapsing cavitation bubble.The simulation results satisfy Laplace law and the adiabatic law,and are consistent with the numerical solution of the Rayleigh-Plesset equation.To study the effects of the non-condensable gas inside bubble on collapsing cavitation bubble,a numerical model of single spherical bubble near a solid wall is established.The temperature and pressure evolution of the two-component two-phase flow are well captured.In addition,the collapse process of the cavitation bubble is discussed elaborately by setting the volume fractions of the gas and vapor to be the only variables.The results show that the non-condensable gas in the bubble significantly affects the pressure field,temperature field evolution,collapse velocity,and profile of the bubble.The distinction of the pressure and temperature on the wall after the second collapse becomes more obvious as the non-condensable gas concentration increases.
基金funded by the National Natural Science Foundation of China(52076159)。
文摘Nowadays,the limits on greenhouse gas emissions are becoming increasingly stringent.In present research,a two-dimensional numerical model was established to simulate the deep removal of 1,1,1,2-tetrafluoroethane(R134a)from the non-condensable gas(NCG)mixture by cryogenic condensation and de-sublimation.The wall condensation method was compiled into the Fluent software to calculate the condensation of R134a from the gas mixture.Besides,the saturated thermodynamic properties of R134a under its triple point were extrapolated by the equation of state.The simulation of the steam condensation with NCG was conducted to verify the validity of the model,the results matched well with the experimental data.Subsequently,the condensation characteristics of R134a with NCG and the thermodynamic parameters affecting condensation were studied.The results show that the section with relatively higher removal efficiency is usually near the inlet.The cold wall temperature has a great influence on the R134a removal performance,e.g.,a 15 K reduction of the wall temperature brings a reduction in the outlet R134a molar fraction by 85.43%.The effect of changing mass flow rate on R134a removal is mainly reflected at the outlet,where an increase in mass flow rate of 12.6% can aggravate the outlet molar fraction to 210.3% of the original.The research can provide a valuable reference for the simulation of the deep removal of various low-concentration gas using condensation and de-sublimation methods.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-major project-Research on tight oil-shale oil reservoir engineering methods and key technologies in Ordos Basin(ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015).
文摘An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.
基金Project(20235020) supported by the National Natural Science Foundation of China
文摘The volatile chemical components of Radix Paeoniae Rubra (RPR) were analyzed by gas chromatography-mass spectrometry with the method of heuristic evolving latent projections and overall volume integration. The results show that 38 volatile chemical components of RPR are determined, accounting for 95.21% of total contents of volatile chemical components of RPR. The main volatile chemical components of RPR are (Z, Z)-9,12-octadecadienoic acid, n-hexadecanoic acid, 2-hydroxy- benzaldehyde, 1-(2-hydroxy-4-methoxyphenyl)-ethanone, 6,6-dimethyl-bicyclo[3.1.1] heptane-2-methanol, 4,7-dimethyl-benzofuran, 4-(1-methylethenyl)-1-cyclohexene-1-carboxaldehyde, and cyclohexadecane.
基金supported by the Industry-University-Research Cooperation Program from Science and Technology Department of Guangdong Province (No:2010B090400533)the International Scientific and Technological Cooperation Program of China (No:2009DFA31230)
文摘Volatile components from Rhizoma Alpiniae Officinarum were respectively extracted by three methods including hydrodistillation, headspace solid-phase microextraction (HS-SPME) and diethyl ether extraction. A total of 40 (hydrodistillation), 32 (HS-SPME) and 37 (diethyl ether extraction) compounds were respectively identified by gas chromatography-mass spectrometry (GC/MS) and 22 compounds were overlapped, including β-farnesene, 7-muurolene, 2,6-dimethyl-6- (4-methyl-3-pentenyl)bicyclo[3.1.1]hept-2-ene, eucalyptol and cadina-1(10), 4-diene and so forth, varying in relative contents. HS-SPME is fast, sample saving and solvent-free and it also can achieve similar profiles as those from hydrodistillation and solvent extraction. Therefore, it can be the priority for extracting volatile components from medicinal plants.
基金Project supported by the Postdoctoral Foundation of Changde Cigarette FactoryProject(20060400887) supported by China Postdoctoral Science Foundation
文摘Chromatography-mass spectrometry(GC-MS)was used to analyze the volatile components of cut tobacco samples with the help of heuristic evolving latent projections(HELP).After extracting with simultaneous distillation and extraction method,the volatile components in cut tobacco were detected by GC-MS.Then the obtained original two-dimensional data were resolved into pure mass spectra and chromatograms.The qualitative analysis was performed by similarity searches in the national institute of standards and technology(NIST)mass database with the obtained pure mass spectrum of each component and the quantitative results were obtained by calculating the volume of total two-way response.The accuracy of qualitative and quantitative results were greatly improved by using the two-dimensional comprehensive information of chromatograms and mass spectra.107 of 141 separated constituents in the total ion chromatogram of the volatile components were identified and quantified,accounting for about 88.01% of the total content.The result proves that the developed method is powerful for the analysis of complex cut tobacco samples.
基金financially supported by the Natural Science Foundation for the Youth of China (No. 41202118)the Fundamental Research Funds for the Central Universities (No.2012QNB03)
文摘Adsorption-desorption experiments on CO2-CH4 gas mixtures with varying compositions have been conducted to study the fractionation characteristics of CO2-CH4 on Haishiwan coal samples. These were carried out at constant temperature but different equilibrium pressure conditions. Based on these experimental results, the temporal evolution of component fractionation in the field was investigated. The results show that the CO2 concentration in the adsorbed phase is always greater than that in the original gas mixture during the desorption process, while CH4 shows the opposite characteristics. This has confirmed that CO2 , with a greater adsorption ability has a predominant position in the competition with CH4 under different pressures. Where gas drainage is employed, the ratio of CO2 to CH4 varies with time and space in floor roadways used for gas drainage, and in the ventilation air in Nos.1 and 2 coal seams, which is consistent with laboratory results.
基金supported by the Science and Technology Bureau of FujianProvince, China (No. B50701)the Foundation for Young Pro-fessors of Jimei University, China (No. C19005)
文摘Volatile components of Fuzhou Yulu, a Chinese fish sauce, were analyzed by gas chromatography-mass spectrometry (GC-MS), and two pretreatment methods, i.e., purge and trap (P&T) GC-MS and ethyl acetate extraction followed by GC-MS, were compared. P&T-GC-MS method determined 12 components, including sulfur-containing constituents (such as dimethyl disulfide), nitrogen-containing constituents (such as pyrazine derivatives), aldehydes and ketones. Ethyl acetate extraction fol- lowed by GC-MS method detected 10 components, which were mainly volatile organic acids (such as benzenepropanoic acid) and esters. Neither of the two methods detected alcohols or trimethylamine. This study offers an important reference to determine volatile flavor components of traditional fish sauce through modem analysis methods.
基金Supported by the Basic Research Foundation from Jilin University China(No.200903131)
文摘The ultrasonic nebulization extraction(UNE) was developed and applied to the extraction of volatile components from traditional Chinese patent medicine Xiaoyao Pills. Several parameters of ultrasonic nebulization extraction including the sample particle size, solvent volume, extraction time and ultrasonic power were studied and selected. As a result, 2.4 g of sample with particle size of 80 mesh was extracted with 15 mL of n-hexane for 20 min at an ultrasonic power of 35 W. The volatile components were analyzed by gas chromatography-mass spectrometry (GC-MS) under the optimal conditions and 57 compounds were identified. The precision, repeatability and stability of the proposed method were also studied. Compared with ultrasonic-assisted extraction(UAE) and hydrodistillation(HD) extraction, the proposed method is more efficient, faster and easier to be operated at room temperature with smaller sample and energy consumption. It is suggested that the ultrasonic nebulization extraction can be used as a novel alternative method for the extraction of volatile components from traditional Chinese patent medicine.
基金National Natural Science Foundation of China(Grant No.81872996)Natural Science Foundation of Tianjin of China(Grant No.20JCYBJC00060).
文摘Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro-extraction gas chromatography/mass spectrometry(HS-SPME-GC/MS),was elaborated and further employed to holistically compare the compositional difference of the volatile components simultaneously from 12 Panax herbal medicines,which included P.ginseng(PG),P.quinquefolius(PQ),P.notoginseng(PN),red ginseng(PGR),P.ginseng leaf(PGL),P.quinquefolius leaf(PQL),P.notoginseng leaf(PNL),P.ginseng flower(PGF),P.quinquefolius flower(PQF),P.notoginseng flower(PNF),P.japonicus(PJ),and P.japonicus var.major(PJvm).Chromatographic separation was performed on an HP-5MS elastic quartz capillary column using helium as the carrier gas,enabling good resolution within 1 h.We were able to characterize totally 259 volatile compounds,including 82 terpenes(T),46 alcohols(Alc),29 ketones(K),25 aldehydes(Ald),21 esters(E),and the others.By analyzing 90 batches of ginseng samples based on the untargeted metabolomics workflows,236 differential ions were unveiled,and accordingly 36 differential volatile components were discovered.It is the first report that simultaneously compares the compositional difference of volatile components among 12 Panax herbal medicines,and useful information is provided for the quality control of ginseng aside from the well-known ginsenosides.
基金the National Natural Science Foundation of China(No:20273043)the Ministry of Education of China for providing financial support for this project
文摘A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust.
基金Supported by Taishan Industrial Leading Talent Project(Efficient Ecological Agriculture Innovation)(LJNY202105)。
文摘[Objectives]To compare the effects of molecular distillation on the flavor and antitumor activity of Ganoderma lucidum spore oil.[Methods]G.lucidum spore oil was separated and purified by molecular distillation technology,and the volatile components of different components of molecular distillation were analyzed by gas chromatography-ion mobility spectrometry(GC-IMS)technology.Human liver carcinoma cells(HepG2),human breast cancer cells(MCF-7),and human cervical cancer cells(Hela)were selected as the tumor cell lines to be tested,and the cell viability was detected by the MTT assay.[Results]Molecular distillation effectively reduced small molecular substances produced by oil oxidation in G.lucidum spore oil,such as heptanal,octanal,linalool,hexanal,E-2-octanal,3-ethylpyridine,etc.Among the heavy components,the content of esters was relatively high,mainly including ethyl levulinate,ethyl crotonate,and amyl butyrate.The MTT cytotoxicity test indicated that G.lucidum spore oil and its molecular distillation components had certain inhibitory effects on the growth of three tumor cells,and G.lucidum spore oil crude oil had the most significant antitumor activity.G.lucidum spore oil crude oil,heavy component,and light component had the most significant antitumor activity on HepG2 cells,followed by MCF-7 cells,and the weakest antitumor activity on Hela cells.The quality of G.lucidum spore oil became higher after molecular distillation,and the rancid smell was reduced,and molecular distillation had little effect on the antitumor activity of G.lucidum spores.[Conclusions]Molecular distillation technology can be applied to the refining of G.lucidum spore oil to improve product quality.
基金supported by the Forward Looking Basic Major Scientific and Technological Projects of CNPC (Grant No.2021DJ2202).
文摘Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.
基金support provided by the National Key Research and Development Program of China(Grant No.2018YFB1501805)the National Natural Science Foundation of China(Grant No.52176183)。
文摘The Enhanced Geothermal System(EGS) is a recognized geothermal exploitation system for hot dry rock(HDR), which is a rich resource in China. In this study, a numerical simulation method is used to study the effects of geothermal fluid dryness and non-condensable gas content on the specific enthalpy of geothermal fluid. Combined with the organic Rankine cycle(ORC), a numerical model is established to ascertain the difference in power generation caused by geothermal fluid dryness and non-condensable gas content. The results show that the specific enthalpy of geothermal fluid increases with the increase of geothermal fluid temperature and geothermal fluid dryness. If the dryness of geothermal fluid is ignored, the estimation error will be large for geothermal fluid enthalpy. Ignoring non condensable gas will increase the estimation of geothermal fluid enthalpy, so the existence of the non-condensable gas tends to reduce the installed capacity of a geothermal power plant. Additionally, both mass flow of the working medium and net power output of the ORC power generation system are increased with increasing dryness of geothermal fluid, however there is some impact of geothermal fluid dryness on thermal efficiency.
文摘We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.
基金Supported by the Forestry Department of Heilongjiang Province Science and Technology Promotion Project(01043208003)the Project of Science and Technology Department of Heilongjiang Province(LC07C27)~~
文摘[Objective]The aim was to explore the active compound of Morus alba leaves with the analysis of active components of hexane extractives of M.alba leaves.[Method]Antibacterial assays of hexane extractives of M.alba leaves were done and the volatile components of hexane extractives of M.alba leaves with the strongest antibacterial activity were analyzed by gas chromatography-mass spectrometry(GC-MS).[Result]The results of inhibitory effect of hexane extractives of M.alba leaves on Staphylococcus aureus and Escherichia coli showed that hexane extractives of M.alba leaves collected in June,July and August had antibacterial activity against S.aureus and had no antibacterial effect against E.coli.Furthermore,hexane extractives of M.alba leaves collected in June had the strongest antibacterial activity against S.aureus(inhibition diameter 10.95 mm).The hexane extractives of M.alba leaves collected in June was analyzed by GC-MS,the main volatile components were tetradecane(16.76%),dodecane(13.20%),diisobutyl phthalate(10.26%),decane(9.10%),hexadecane(8.71%),linolenyl alcohol(7.25%),octadecane(5.88%),eicosane(3.26%),dibutyl phthalate(2.59%).[Conclusion]Linolenyl alcohol was the potential antibacterial compound.
基金Supported by Key Science and Technology Project of Gansu Province(1302NKDA028)Science and Technology Planning Project of Lanzhou(2010-1-239+2 种基金 2016-3-4)Talent Project of Lanzhou Science and Technology Bureau(2015-RC-87)Project of Science and Technology Cooperation between Gansu Academy of Agricultural Sciences and Local Areas(2017GAAS63)
文摘[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.
基金Supported by National Key R&D Program(2016YFD0400704-3)Efficient Ecological Agriculture Innovation Program of Taishan Industry Leading Talent Project(LJNY2015004)
文摘Carrot juice was fermented by probiotic Lactobacillus casei( CTCF-LC1) and Lactobacillus reuteri( CTCF-LT1) with sensory score as the main evaluation index,and the fermentation process was optimized by single factor and response surface experiments.The optimum ratio of fermentative strains CTCF-LC1∶ CTCF-LT1 was 1∶ 1,fermentation time was 8 h,inoculum size was 3.1% and fermentation temperature was26.6℃.Under the optimum conditions,the sensory score of fermented carrot juice was 91.3,pH was 4.50,total acid content was 3.73 g/L,total sugar content was 54.25 g/L,and reducing sugar content was 28.41 g/L.The carrot juice has bright orange color and stable state.It not only has the fresh flavor of fruit and vegetable juice,but also has the unique aroma from lactic acid bacteria fermentation,as well as soft and even taste,moderate acidity and sweetness.The changes of aroma components of carrot juice before and after fermentation were analyzed by headspace solid phase microextraction( HSPME) coupled with gas chromatography-mass spectrometry( GC-MS).After fermentation,substances with medicinal flavor components were reduced,and a lot of floral and fruit-scented substances were produced,such as methyl myristate,β-pinene,phenylethanol,and geraniol.Therefore,the results of this study can provide a theoretical basis for the development of fermented fruit and vegetable juice products with unique flavor substances.
基金This work was financially supported by the Program of National Natural Science Foundation of China(Nos.U1937204 and 51905124)China Postdoctoral Science Foundation(2019M661278).
文摘Complex thin-walled titanium alloy components play a key role in the aircraft,aerospace and marine industries,offering the advantages of reduced weight and increased thermal resistance.The geometrical complexity,dimensional accuracy and in-service properties are essential to fulfill the high-performance standards required in new transportation systems,which brings new challenges to titanium alloy forming technologies.Traditional forming processes,such as superplastic forming or hot pressing,cannot meet all demands of modern applications due to their limited properties,low productivity and high cost.This has encouraged industry and research groups to develop novel high-efficiency forming processes.Hot gas pressure forming and hot stamping-quenching technologies have been developed for the manufacture of tubular and panel components,and are believed to be the cut-edge processes guaranteeing dimensional accuracy,microstructure and mechanical properties.This article intends to provide a critical review of high-efficiency titanium alloy forming processes,concentrating on latest investigations of controlling dimensional accuracy,microstructure and properties.The advantages and limitations of individual forming process are comprehensively analyzed,through which,future research trends of high-efficiency forming are identified including trends in process integration,processing window design,full cycle and multi-objective optimization.This review aims to provide a guide for researchers and process designers on the manufacture of thin-walled titanium alloy components whilst achieving high dimensional accuracy and satisfying performance properties with high efficiency and low cost.