The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, ...A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, and one capacitance sensor for measuring the aperture of the small blind holes or through holes is introduced. The system is composed of one positioning device, one aperture measuring capacitance sensor, one measuring circuit, and software. This system employs visual CCD and two-dimensional mic...展开更多
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the...Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.展开更多
Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted ...Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.展开更多
AIM:To quantitatively measure ocular morphological parameters of guinea pig with Python technology.METHODS:Thirty-six eyeballs of eighteen 3-weekold guinea pigs were measured with keratometer and photographed to obtai...AIM:To quantitatively measure ocular morphological parameters of guinea pig with Python technology.METHODS:Thirty-six eyeballs of eighteen 3-weekold guinea pigs were measured with keratometer and photographed to obtain the horizontal,coronal,and sagittal planes respectively.The corresponding photo pixels-actual length ratio was acquired by a proportional scale.The edge coordinates were identified artificially by ginput function.Circle and conic curve fitting were applied to fit the contour of the eyeball in the sagittal,coronal and horizontal view.The curvature,curvature radius,eccentricity,tilt angle,corneal diameter,and binocular separation angle were calculated according to the geometric principles.Next,the eyeballs were removed,canny edge detection was applied to identify the contour of eyeball in vitro.The results were compared between in vivo and in vitro.RESULTS:Regarding the corneal curvature and curvature radius on the horizontal and sagittal planes,no significant differences were observed among results in vivo,in vitro,and the keratometer.The horizontal and vertical binocular separation angles were 130.6°±6.39°and 129.8°±9.58°respectively.For the corneal curvature radius and eccentricity in vivo,significant differences were observed between horizontal and vertical planes.CONCLUSION:The Graphical interface window of Python makes up the deficiency of edge detection,which requires too much definition in Matlab.There are significant differences between guinea pig and human beings,such as exotropic eye position,oblique oval eyeball,and obvious discrepancy of binoculus.This study helps evaluate objectively the ocular morphological parameters of small experimental animals in emmetropization research.展开更多
BACKGROUND To avoid acute variceal bleeding in cirrhosis,current guidelines recommend screening for high-risk esophageal varices(EVs)by determining variceal size and identifying red wale markings.However,visual measur...BACKGROUND To avoid acute variceal bleeding in cirrhosis,current guidelines recommend screening for high-risk esophageal varices(EVs)by determining variceal size and identifying red wale markings.However,visual measurements of EV during routine endoscopy are often inaccurate.AIM To determine whether biopsy forceps(BF)could be used as a reference to improve the accuracy of binary classification of variceal size.METHODS An in vitro self-made EV model with sizes ranging from 2 to 12 mm in diameter was constructed.An online image-based survey comprising 11 endoscopic images of simulated EV without BF and 11 endoscopic images of EV with BF was assembled and sent to 84 endoscopists.The endoscopists were blinded to the actual EV size and evaluated the 22 images in random order.RESULTS The respondents included 48 academic and four private endoscopists.The accuracy of EV size estimation was low in both the visual(13.81%)and BF-based(20.28%)groups.The use of open forceps improved the ability of the endoscopists to correctly classify the varices by size(small≤5 mm,large>5 mm)from 71.85%to 82.17%(P<0.001).CONCLUSION BF may improve the accuracy of EV size assessment,and its use in clinical practice should be investigated.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon...A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.展开更多
Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain a...Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.展开更多
The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at...The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.展开更多
By using principal component analysis,this paper had modified and put forward a theoretical model of evaluation on tourist satisfaction degree with tourist perception quality and tourist satisfaction degree as structu...By using principal component analysis,this paper had modified and put forward a theoretical model of evaluation on tourist satisfaction degree with tourist perception quality and tourist satisfaction degree as structure variables and with thirty indexes like image of tourist area,tourists' expectation,infrastructure in tourist area,landscape features and ticket price as observed variables,based on random questionnaire survey of tourists of Zhenyuan ancient city in Guizhou Province and the existing evaluation models of tourist satisfaction degree at home and abroad.The survey result showed that tourist satisfaction degree was not high,that tourists were dissatisfied with observing facilities,transportation,accommodation and landscape features,and that the attraction power of tourist area was weak.The comprehensive tourist satisfaction degree of Zhenyuan ancient city was 77.653.Therefore,the government should enhance reconstruction of infrastructure and construction of landscape features,and improve tourist service quality level,so as to realize sustainable development of tourist economy in Zhenyuan ancient city.展开更多
A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright ...A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright spot is pegged on the object to be measured and imaged to the target of CCD camera through a telescopic lens. The CCD target converts the optical signal to equivalent electric signal. The video frequency signal is digitized to an array of 512×512 pixels by the analog to digital converter (ADC), then transmitted to the computer. The computer controls the data acquisition, conducts image processing and detects the location of the target spot. Comparing the current position with the original position of the spot, the displacement of object is obtained. With the aid of analysis software, the system can achieve the resolution of 0 01 mm in the 6 m distance from the object to the point of observation. To meet the need of practice, the measuring distance can be extended to 100 m or even farther.展开更多
A non contact three dimensional measurement method is presented in this paper.This system consists of a laser triangulation probe,a probe head and a coordinate measuring machine (CMM).The measurement principle of th...A non contact three dimensional measurement method is presented in this paper.This system consists of a laser triangulation probe,a probe head and a coordinate measuring machine (CMM).The measurement principle of the system is discussed,and a system calibration method employing a reference ball is proposed.The geometric model involving four frames is established to calculate the data points based on the reading of the laser probe and position information from the CMM.A measuring experiment for gesso free form surface using this system is carried out.展开更多
Comparing with the coordinates measuring machine (CMM),the theodolite industrial measuring system (TIMS) can be easily moved and it can measure large sized industrial targets contactlessly.But up to now the precision...Comparing with the coordinates measuring machine (CMM),the theodolite industrial measuring system (TIMS) can be easily moved and it can measure large sized industrial targets contactlessly.But up to now the precision of the TIMS has been considered so low that the TIMS isnt applied to some precise measurements.The error in self locating TIMS is a main factor which affects the precision of the TIMS.A new model of the TIMS is given out in this paper,and it can eliminate the error in self locating the TIMS.The new model is not only investigated and analyzed theoretically but also verified by the real measured data.展开更多
Based on the development of the non-contact measurement system of free-formsurface, NURBS reconstruction of measurement points of freeform surface is effectively realized bymodifying the objective function and recursi...Based on the development of the non-contact measurement system of free-formsurface, NURBS reconstruction of measurement points of freeform surface is effectively realized bymodifying the objective function and recursive procedure and calculating the optimum number ofcontrol points. The reconstruction precision is evaluated through Ja-cobi's transformation method.The feasibility of the measurement system and effectiveness of the reconstruction algorithm aboveare proved by experiment.展开更多
The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable...The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.展开更多
A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrum...A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
文摘A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, and one capacitance sensor for measuring the aperture of the small blind holes or through holes is introduced. The system is composed of one positioning device, one aperture measuring capacitance sensor, one measuring circuit, and software. This system employs visual CCD and two-dimensional mic...
基金supported by the Project of State Grid Hebei Electric Power Co.,Ltd.(SGHEYX00SCJS2100077).
文摘Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 92065113, 11904357, 62075208, and 12174367)the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0301604)+1 种基金the National Key Research and Development Program of China (Grant No. 2021YFE0113100)supported by Beijing Academy of Quantum Information Sciences
文摘Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.
基金Supported by the National Natural Science Foundation of China(No.81400428)Self-selected Projects of Shanghai Children’s Hospital(No.2020R124)Shanghai Children’s Hospital Hospital-level Project Clinical Research Cultivation Special Focus Project(No.2021YLYZ03).
文摘AIM:To quantitatively measure ocular morphological parameters of guinea pig with Python technology.METHODS:Thirty-six eyeballs of eighteen 3-weekold guinea pigs were measured with keratometer and photographed to obtain the horizontal,coronal,and sagittal planes respectively.The corresponding photo pixels-actual length ratio was acquired by a proportional scale.The edge coordinates were identified artificially by ginput function.Circle and conic curve fitting were applied to fit the contour of the eyeball in the sagittal,coronal and horizontal view.The curvature,curvature radius,eccentricity,tilt angle,corneal diameter,and binocular separation angle were calculated according to the geometric principles.Next,the eyeballs were removed,canny edge detection was applied to identify the contour of eyeball in vitro.The results were compared between in vivo and in vitro.RESULTS:Regarding the corneal curvature and curvature radius on the horizontal and sagittal planes,no significant differences were observed among results in vivo,in vitro,and the keratometer.The horizontal and vertical binocular separation angles were 130.6°±6.39°and 129.8°±9.58°respectively.For the corneal curvature radius and eccentricity in vivo,significant differences were observed between horizontal and vertical planes.CONCLUSION:The Graphical interface window of Python makes up the deficiency of edge detection,which requires too much definition in Matlab.There are significant differences between guinea pig and human beings,such as exotropic eye position,oblique oval eyeball,and obvious discrepancy of binoculus.This study helps evaluate objectively the ocular morphological parameters of small experimental animals in emmetropization research.
文摘BACKGROUND To avoid acute variceal bleeding in cirrhosis,current guidelines recommend screening for high-risk esophageal varices(EVs)by determining variceal size and identifying red wale markings.However,visual measurements of EV during routine endoscopy are often inaccurate.AIM To determine whether biopsy forceps(BF)could be used as a reference to improve the accuracy of binary classification of variceal size.METHODS An in vitro self-made EV model with sizes ranging from 2 to 12 mm in diameter was constructed.An online image-based survey comprising 11 endoscopic images of simulated EV without BF and 11 endoscopic images of EV with BF was assembled and sent to 84 endoscopists.The endoscopists were blinded to the actual EV size and evaluated the 22 images in random order.RESULTS The respondents included 48 academic and four private endoscopists.The accuracy of EV size estimation was low in both the visual(13.81%)and BF-based(20.28%)groups.The use of open forceps improved the ability of the endoscopists to correctly classify the varices by size(small≤5 mm,large>5 mm)from 71.85%to 82.17%(P<0.001).CONCLUSION BF may improve the accuracy of EV size assessment,and its use in clinical practice should be investigated.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
文摘A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.
基金Supported by Horizontal Program of Space Long March Rocket Technology Co. Ltd (500036)
文摘Dual-frequency and multi-polarization spaceborne rain and cloud measuring radar is the inevitable trend of remote sensing techniques.Techniques of new generation dual-frequency and multi-polarization spaceborne rain and cloud measuring radar are studied systematically.Radar block diagram and main parameters are presented.Antenna subsystem scheme is analyzed and antenna parameters are proposed.Central electronic device subsystem scheme is given and data rate of spaceborne radar is calculated.This paper is a meaningful try for carrying out spaceborne rain and cloud measuring radar design,acting as a reference to Chinese spaceborne rain and cloud measuring radar design and production in future.
文摘The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.
基金Supported by Planning Project of Kaili Institute(Z1009)and Youth Foundation of Special Scientific Research Project of Key Discipline of Tourist Management of Kaili Institute(lgz200904)~~
文摘By using principal component analysis,this paper had modified and put forward a theoretical model of evaluation on tourist satisfaction degree with tourist perception quality and tourist satisfaction degree as structure variables and with thirty indexes like image of tourist area,tourists' expectation,infrastructure in tourist area,landscape features and ticket price as observed variables,based on random questionnaire survey of tourists of Zhenyuan ancient city in Guizhou Province and the existing evaluation models of tourist satisfaction degree at home and abroad.The survey result showed that tourist satisfaction degree was not high,that tourists were dissatisfied with observing facilities,transportation,accommodation and landscape features,and that the attraction power of tourist area was weak.The comprehensive tourist satisfaction degree of Zhenyuan ancient city was 77.653.Therefore,the government should enhance reconstruction of infrastructure and construction of landscape features,and improve tourist service quality level,so as to realize sustainable development of tourist economy in Zhenyuan ancient city.
文摘A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright spot is pegged on the object to be measured and imaged to the target of CCD camera through a telescopic lens. The CCD target converts the optical signal to equivalent electric signal. The video frequency signal is digitized to an array of 512×512 pixels by the analog to digital converter (ADC), then transmitted to the computer. The computer controls the data acquisition, conducts image processing and detects the location of the target spot. Comparing the current position with the original position of the spot, the displacement of object is obtained. With the aid of analysis software, the system can achieve the resolution of 0 01 mm in the 6 m distance from the object to the point of observation. To meet the need of practice, the measuring distance can be extended to 100 m or even farther.
基金Supported by"863"High Technology Development Comittee ofChina (No."863"- 51 1 - 942 - 0 2 4 ) National Natural Science Foun-dation of China (No.50 0 750 64)
文摘A non contact three dimensional measurement method is presented in this paper.This system consists of a laser triangulation probe,a probe head and a coordinate measuring machine (CMM).The measurement principle of the system is discussed,and a system calibration method employing a reference ball is proposed.The geometric model involving four frames is established to calculate the data points based on the reading of the laser probe and position information from the CMM.A measuring experiment for gesso free form surface using this system is carried out.
文摘Comparing with the coordinates measuring machine (CMM),the theodolite industrial measuring system (TIMS) can be easily moved and it can measure large sized industrial targets contactlessly.But up to now the precision of the TIMS has been considered so low that the TIMS isnt applied to some precise measurements.The error in self locating TIMS is a main factor which affects the precision of the TIMS.A new model of the TIMS is given out in this paper,and it can eliminate the error in self locating the TIMS.The new model is not only investigated and analyzed theoretically but also verified by the real measured data.
基金This project is supported by Provincial Natural Science Foundation of Zhejiang of China (No.599026).
文摘Based on the development of the non-contact measurement system of free-formsurface, NURBS reconstruction of measurement points of freeform surface is effectively realized bymodifying the objective function and recursive procedure and calculating the optimum number ofcontrol points. The reconstruction precision is evaluated through Ja-cobi's transformation method.The feasibility of the measurement system and effectiveness of the reconstruction algorithm aboveare proved by experiment.
基金Supported by The Special Coordination Fund(SCF)for Pro-moting Science and Technology commissioned by the Ministry of Education,Culture,Sports,Science and Technology(MEXT)of Japan
文摘AIM: To verify the performance of a lesion size measurement system through a clinical study.
基金Supported by National Natural Science Foundation of China(Grant No.51265017)Jiangxi Provincial Science and Technology Planning Project,China(Grant No.GJJ12468)Science and Technology Planning Project of Ji’an City,China(Grant No.20131828)
文摘The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.
基金This project is supported by National Natural Science Foundation of China(No.50135050).
文摘A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.