The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense ...The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.展开更多
Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This ...Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method.展开更多
Robotic grippers have been used in industry as end-effectors but are usually limited to operations in pre-defined workspace.However,few devices can capture irregularly shaped dynamic targets in space,underwater and ot...Robotic grippers have been used in industry as end-effectors but are usually limited to operations in pre-defined workspace.However,few devices can capture irregularly shaped dynamic targets in space,underwater and other unstructured environments.In this paper,a novel continuum arm group mechanism inspired by the morphology and motions of sea anemones is proposed.It is able to dissipate and absorb the kinetic energy of a fast moving target in omni-direction and utilize multiple arms to wrap and lock the target without accurate positioning control.Wire-driven actuation systems are implemented in the individual continuum arms,achieving both bending motion and stiffness regulation.Through finite element method,the influence of different configurations of the continuum arm group on the capture performance is analyzed.A robotic prototype is constructed and tested,showing the presented arm group mechanism has high adaptability to capture targets with different sizes,shapes,and incident angles.展开更多
For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes...For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.展开更多
A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-...A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-bar linkages lock the docking ring,which is used for connecting the satellite and the rocket. The mathematical model of capture mechanism and capture space is built by the Denavit-Hartenberg(D-H)method,and the torque of each joint is analyzed by the Lagrange dynamic equation. Besides,the capture condition and the torque of every joint under different capture conditions are analyzed by simulation in MSC. Adams. The results indicate that the mechanism can capture the non-cooperative target satellite in a wide range. During the process of capture,the passive compliant mechanism at the bottom can increase capture space,thereby reducing the difficulty and enhance stability of the capture.展开更多
This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknow...This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme.展开更多
The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on ...The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.展开更多
The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This...The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.展开更多
Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein I...Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.展开更多
Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The prob...Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The problem takes into account the coordination of production and transportation before production as well as the disparities in machine spatial position and performance.A non-cooperative game model is established,considering the competition and self-interest behavior of jobs from different customers for machine resources.The job from different customers is mapped to the players in the game model,the corresponding optional processing machine and location are mapped to the strategy set,and the makespan of the job is mapped to the payoff.Then the solution of the scheduling model is transformed into the Nash equilibrium of the non-cooperative game model.A Nash equilibrium solution algorithm based on the genetic algorithm(NEGA)is designed,and the effective solution of approximate Nash equilibrium for the game model is realized.The fitness function,single-point crossover operator,and mutation operator are derived from the non-cooperative game model’s characteristics and the definition of Nash equilibrium.Rules are also designed to avoid the generation of invalid offspring chromosomes.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.Compared with other algorithms such as heuristic algorithms(FCFS,SPT,and LPT),the simulated annealing algorithm(SA),and the particle swarm optimization algorithm(PSO),experimental results show that the proposed NE-GA algorithm has obvious performance advantages.展开更多
A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs...A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs of two agents compete for the processing position on a machine,and after the pro-cessed,they compete for the transport position on a transport vehicle to be trans-ported to two agents.The two agents have different objective functions.The objective function of the first agent is the sum of the makespan and the total trans-portation time,whereas the objective function of the second agent is the sum of the total completion time and the total transportation time.Given the competition between two agents for machine resources and transportation resources,a non-cooperative game model with agents as game players is established.The job pro-cessing position and transportation position corresponding to the two agents are mapped as strategies,and the corresponding objective function is the utility func-tion.To solve the game model,an approximate Nash equilibrium solution algo-rithm based on an improved genetic algorithm(NE-IGA)is proposed.The genetic operation based on processing sequence and transportation sequence,as well as the fitness function based on Nash equilibrium definition,are designed based on the features of the two-agent production and transportation coordination scheduling problem.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.When compared to heuristic rules such as the Longest Processing Time first(LPT)and the Shortest Processing Time first(SPT),the objective function values of the two agents are reduced by 4.3%and 2.6% on average.展开更多
Emergency decision-making problems usually involve many experts with different professional backgrounds and concerns,leading to non-cooperative behaviors during the consensus-reaching process.Many studies on noncooper...Emergency decision-making problems usually involve many experts with different professional backgrounds and concerns,leading to non-cooperative behaviors during the consensus-reaching process.Many studies on noncooperative behavior management assumed that the maximumdegree of cooperation of experts is to totally accept the revisions suggested by the moderator,which restricted individuals with altruistic behaviors to make more contributions in the agreement-reaching process.In addition,when grouping a large group into subgroups by clustering methods,existing studies were based on the similarity of evaluation values or trust relationships among experts separately but did not consider them simultaneously.In this study,we introduce a clustering method considering the similarity of evaluation values and the trust relations of experts and then develop a consensusmodel taking into account the altruistic behaviors of experts.First,we cluster experts into subgroups by a constrained Kmeans clustering algorithm according to the opinion similarity and trust relationship of experts.Then,we calculate the weights of experts and clusters based on the centrality degrees of experts.Next,to enhance the quality of consensus reaching,we identify three kinds of non-cooperative behaviors and propose corresponding feedback mechanisms relying on the altruistic behaviors of experts.A numerical example is given to show the effectiveness and practicality of the proposed method in emergency decision-making.The study finds that integrating altruistic behavior analysis in group decision-making can safeguard the interests of experts and ensure the integrity of decision-making information.展开更多
The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be furth...The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.展开更多
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic...The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.展开更多
Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with ...Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages,but it is often ineffective and suffers from problems such as multidrug resistance,rapid drug clearance,nonspecific targeting,high side effects,and low drug accumulation in tumor cells.In response to these limitations,recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC.This review focuses on recent advances in nanoparticle-based targeted drug delivery systems,with special attention to various receptors overexpressed on HCC cells.These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC.We comprehensively summarize the current understanding of these receptors,their role in nanoparticle targeting,and the impact of such targeted therapies on HCC.By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies,more effective and precise treatment of HCC can be achieved.展开更多
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig...Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.展开更多
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Re...Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.展开更多
In this paper, the relative sliding motion between the target and the manipulator’s endeffector is considered and characterized as a unilateral contact constraint. A new possible solution is presented to estimate the...In this paper, the relative sliding motion between the target and the manipulator’s endeffector is considered and characterized as a unilateral contact constraint. A new possible solution is presented to estimate the inertial parameters of a non-cooperative target while the relative sliding motion exists. First, the detailed analysis of the dynamical model is presented, and a parameterexplicit linear time-varying model is obtained. Then, an extended state observer is constructed based on the new model, which can effectively estimate the unknown inertial parameters of the target when relative sliding motion exists. As the modified reactionless controller requires the knowledge of inertial parameters, a hybrid post-capture control scheme is also established based on the switch law between different controllers. The correctness and efficiency of the proposed algorithm are validated by numerical simulation, which proves a potential framework for the non-cooperative target postcapture operation.展开更多
Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel ne...Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms.展开更多
BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of canc...BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.展开更多
基金supported by the National Natural Science Foundation of China (61903025)the Fundamental Research Funds for the Cent ral Universities (FRF-IDRY-20-013)。
文摘The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.
基金supported by the National Natural Science Foundation of China (61673009)。
文摘Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method.
基金Supported by National Key R&D Program of China(Grant Nos.2019YFB1309800,2018YFB1304600)National Natural Science Foundation of China(Grant No.51875393)State Key Laboratory of Robotics Foundation-China(Grant No.2019-O04).
文摘Robotic grippers have been used in industry as end-effectors but are usually limited to operations in pre-defined workspace.However,few devices can capture irregularly shaped dynamic targets in space,underwater and other unstructured environments.In this paper,a novel continuum arm group mechanism inspired by the morphology and motions of sea anemones is proposed.It is able to dissipate and absorb the kinetic energy of a fast moving target in omni-direction and utilize multiple arms to wrap and lock the target without accurate positioning control.Wire-driven actuation systems are implemented in the individual continuum arms,achieving both bending motion and stiffness regulation.Through finite element method,the influence of different configurations of the continuum arm group on the capture performance is analyzed.A robotic prototype is constructed and tested,showing the presented arm group mechanism has high adaptability to capture targets with different sizes,shapes,and incident angles.
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201901D211242201701D221017)。
文摘For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.
基金supported by the National Natural Science Foundation of China(No.51675264)
文摘A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-bar linkages lock the docking ring,which is used for connecting the satellite and the rocket. The mathematical model of capture mechanism and capture space is built by the Denavit-Hartenberg(D-H)method,and the torque of each joint is analyzed by the Lagrange dynamic equation. Besides,the capture condition and the torque of every joint under different capture conditions are analyzed by simulation in MSC. Adams. The results indicate that the mechanism can capture the non-cooperative target satellite in a wide range. During the process of capture,the passive compliant mechanism at the bottom can increase capture space,thereby reducing the difficulty and enhance stability of the capture.
基金This study was co-supported by the National Natural Science Foundation of China(Nos.62003371,62373379,62103446,61273351,62073343)the Outstanding Youth Fund of Hunan Provincial Natural Science,China(No.2022JJ20081)the Innovation Driven Project of Central South University,China(No.2023CXQD066).
文摘This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme.
基金supported by the National Natural Science Foundation of China(Nos.62003115,11972130)Shenzhen Natural Science Fund(the Stable Support Plan Program GXWD20201230155427003-20200821170719001).
文摘The contact point configuration should be carefully chosen to ensure a stable capture,especially for the non-cooperative target capture mission using multi-armed spacecraft.In this work scenario,the contact points on the base and on the arms are distributed on the opposite side of the target.Otherwise,large forces will be needed.To cope with this problem,an uneven-oriented distribution union criterion is proposed.The union criterion contains a virtual symmetrical criterion and a geometry criterion.The virtual symmetrical contact point criterion is derived from the proof of the force closure principle using computational geometry to ensure a stable grasp,and the geometry criterion is calculated by the volume of the minimum polyhedron formed by the contact points to get a wide-range distribution.To further accelerate the optimization rate and enhance the global search ability,a line array modeling method and a continuous-discrete global search algorithm are proposed.The line array modeling method reduces the workload of calculating the descent direction and the gradient available,while the continuous-discrete global search algorithm reducing the optimization dimension.Then a highly efficient grasping is achieved and the corresponding contact point is calculated.Finally,an exhaustive verification is conducted to numerically analyze the disturbance resistance ability,and simulation results demonstrate the effectiveness of the proposed algorithms.
文摘The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)+2 种基金Natural Science Foundation of Hainan Province(No.822RC703 for J.L.)Foundation of Hainan Educational Committee(No.Hnky2022-27 for J.L.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.
基金supported in part by the Project of Liaoning BaiQianWan Talents ProgramunderGrand No.2021921089the Science Research Foundation of EducationalDepartment of Liaoning Province under Grand No.LJKQZ2021057 and WJGD2020001the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017.
文摘Given the challenges of manufacturing resource sharing and competition in the modern manufacturing industry,the coordinated scheduling problem of parallel machine production and transportation is investigated.The problem takes into account the coordination of production and transportation before production as well as the disparities in machine spatial position and performance.A non-cooperative game model is established,considering the competition and self-interest behavior of jobs from different customers for machine resources.The job from different customers is mapped to the players in the game model,the corresponding optional processing machine and location are mapped to the strategy set,and the makespan of the job is mapped to the payoff.Then the solution of the scheduling model is transformed into the Nash equilibrium of the non-cooperative game model.A Nash equilibrium solution algorithm based on the genetic algorithm(NEGA)is designed,and the effective solution of approximate Nash equilibrium for the game model is realized.The fitness function,single-point crossover operator,and mutation operator are derived from the non-cooperative game model’s characteristics and the definition of Nash equilibrium.Rules are also designed to avoid the generation of invalid offspring chromosomes.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.Compared with other algorithms such as heuristic algorithms(FCFS,SPT,and LPT),the simulated annealing algorithm(SA),and the particle swarm optimization algorithm(PSO),experimental results show that the proposed NE-GA algorithm has obvious performance advantages.
基金This work was supported in part by the Project of Liaoning BaiQianWan Talents Program under Grand No.2021921089the Science Research Foundation of Educational Department of Liaoning Province under Grand No.LJKQZ2021057 and WJGD2020001+2 种基金the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017the special project of SUT on serving local economic and social development decision-making under Grant FWDFGD2021019the“Double First-Class”Construction Project in Liaoning Province under Grant ZDZRGD2020037.
文摘A two-agent production and transportation coordinated scheduling problem in a single-machine environment is suggested to compete for one machine from different downstream production links or various consumers.The jobs of two agents compete for the processing position on a machine,and after the pro-cessed,they compete for the transport position on a transport vehicle to be trans-ported to two agents.The two agents have different objective functions.The objective function of the first agent is the sum of the makespan and the total trans-portation time,whereas the objective function of the second agent is the sum of the total completion time and the total transportation time.Given the competition between two agents for machine resources and transportation resources,a non-cooperative game model with agents as game players is established.The job pro-cessing position and transportation position corresponding to the two agents are mapped as strategies,and the corresponding objective function is the utility func-tion.To solve the game model,an approximate Nash equilibrium solution algo-rithm based on an improved genetic algorithm(NE-IGA)is proposed.The genetic operation based on processing sequence and transportation sequence,as well as the fitness function based on Nash equilibrium definition,are designed based on the features of the two-agent production and transportation coordination scheduling problem.The effectiveness of the proposed algorithm is demonstrated through numerical experiments of various sizes.When compared to heuristic rules such as the Longest Processing Time first(LPT)and the Shortest Processing Time first(SPT),the objective function values of the two agents are reduced by 4.3%and 2.6% on average.
基金supported by the National Natural Science Foundation of China (Nos.71771156,71971145,72171158).
文摘Emergency decision-making problems usually involve many experts with different professional backgrounds and concerns,leading to non-cooperative behaviors during the consensus-reaching process.Many studies on noncooperative behavior management assumed that the maximumdegree of cooperation of experts is to totally accept the revisions suggested by the moderator,which restricted individuals with altruistic behaviors to make more contributions in the agreement-reaching process.In addition,when grouping a large group into subgroups by clustering methods,existing studies were based on the similarity of evaluation values or trust relationships among experts separately but did not consider them simultaneously.In this study,we introduce a clustering method considering the similarity of evaluation values and the trust relations of experts and then develop a consensusmodel taking into account the altruistic behaviors of experts.First,we cluster experts into subgroups by a constrained Kmeans clustering algorithm according to the opinion similarity and trust relationship of experts.Then,we calculate the weights of experts and clusters based on the centrality degrees of experts.Next,to enhance the quality of consensus reaching,we identify three kinds of non-cooperative behaviors and propose corresponding feedback mechanisms relying on the altruistic behaviors of experts.A numerical example is given to show the effectiveness and practicality of the proposed method in emergency decision-making.The study finds that integrating altruistic behavior analysis in group decision-making can safeguard the interests of experts and ensure the integrity of decision-making information.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant 2021200.
文摘The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur.
基金the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18).
文摘The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.
基金Supported by Xi'an Jiaotong University Medical"Basic-Clinical"Integration Innovation Project,No.YXJLRH2022067Shaanxi Postdoctoral Research Program“Orlistat-loaded Nanoparticles as A Targeted Therapeutical Strategy for The Enhanced Treatment of Liver Cancer”,No.2023BSHYDZZ09.
文摘Hepatocellular carcinoma(HCC)is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality.Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages,but it is often ineffective and suffers from problems such as multidrug resistance,rapid drug clearance,nonspecific targeting,high side effects,and low drug accumulation in tumor cells.In response to these limitations,recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC.This review focuses on recent advances in nanoparticle-based targeted drug delivery systems,with special attention to various receptors overexpressed on HCC cells.These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC.We comprehensively summarize the current understanding of these receptors,their role in nanoparticle targeting,and the impact of such targeted therapies on HCC.By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies,more effective and precise treatment of HCC can be achieved.
基金National Natural Science Foundation of China(No.42271416)Guangxi Science and Technology Major Project(No.AA22068072)Shennongjia National Park Resources Comprehensive Investigation Research Project(No.SNJNP2023015).
文摘Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue.
基金supported by the National Natural Science Foundation of China,Nos.82071382(to MZ),81601306(to HS)The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to MZ)+5 种基金Jiangsu 333 High-Level Talent Training Project(2022)(to HS)The Jiangsu Maternal and Child Health Research Key Project,No.F202013(to HS)Jiangsu Talent Youth Medical Program,No.QNRC2016245(to HS)Shanghai Key Lab of Forensic Medicine,No.KF2102(to MZ)Suzhou Science and Technology Development Project,No.SYS2020089(to MZ)The Fifth Batch of Gusu District Health Talent Training Project,No.GSWS2019060(to HS)。
文摘Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.
基金supported by the National Natural Science Foundation of China (Nos. 11972182,U1637207)sponsored by Qing Lan Project, Funded by Science and Technology on Space Intelligent Control Laboratory (No. HTKJ2019KL502012)Funded Project of Shanghai Aerospace Science and Technology (No. SAST2017-092)。
文摘In this paper, the relative sliding motion between the target and the manipulator’s endeffector is considered and characterized as a unilateral contact constraint. A new possible solution is presented to estimate the inertial parameters of a non-cooperative target while the relative sliding motion exists. First, the detailed analysis of the dynamical model is presented, and a parameterexplicit linear time-varying model is obtained. Then, an extended state observer is constructed based on the new model, which can effectively estimate the unknown inertial parameters of the target when relative sliding motion exists. As the modified reactionless controller requires the knowledge of inertial parameters, a hybrid post-capture control scheme is also established based on the switch law between different controllers. The correctness and efficiency of the proposed algorithm are validated by numerical simulation, which proves a potential framework for the non-cooperative target postcapture operation.
基金supported by National Natural Science Foundation of China(Grant No.61871209,No.62272182 and No.61901210)Shenzhen Science and Technology Program under Grant JCYJ20220530161004009+2 种基金Natural Science Foundation of Hubei Province(Grant No.2022CF011)Wuhan Business University Doctoral Fundamental Research Funds(Grant No.2021KB005)in part by Artificial Intelligence and Intelligent Transportation Joint Technical Center of HUST and Hubei Chutian Intelligent Transportation Co.,LTD under project Intelligent Tunnel Integrated Monitoring and Management System.
文摘Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms.
基金Supported by National Natural Science Foundation of China,No.82360329Inner Mongolia Medical University General Project,No.YKD2023MS047Inner Mongolia Health Commission Science and Technology Plan Project,No.202201275.
文摘BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.