To investigate the non-covalent interaction between cyclodextrins (CD) and lithium ion, a stoichiometry of α-CD, β-CD, heptakis(2,6-di-O-methyl)-β-CD (DM-β-CD), or heptakis(2,3,6-tri-O-methyl)-β-CD (TM-...To investigate the non-covalent interaction between cyclodextrins (CD) and lithium ion, a stoichiometry of α-CD, β-CD, heptakis(2,6-di-O-methyl)-β-CD (DM-β-CD), or heptakis(2,3,6-tri-O-methyl)-β-CD (TM-β-CD) was mixed with lithium salt, respectively, and then incubated at room temperature for 10 min to reach the equilibrium. In posi- tive mode, the electrospray ionization mass spectrometry (ESI-MS) results demonstrated that lithium ion can conjugate to α-, β-, DM-β- or TM-β-CD and form 1:1 stoichiometric non-covalent complexes. The binding of the complexes was further confirmed by collision- induced dissociation. The dissociation constants Kdl of four complexes (Li+α-CD, Li+β- CD, Li+DM-β-CD, and Li+TM-β-CD) were determined by mass spectrometric titration. The results showed Kdl were 18.7, 26.7, 33.6, 30.5 μmol/L for the complexes of Li+ with α-CD, β-CD, DM-β-CD, and TM-β-CD, respectively. Kdl for the Li+ complexes of/3-CD is smaller than that of DM-β-CD due to its steric effect of the partial substituted -CH3. The Kdl for the Li+ complexes of DM-β-CD is nearly in agreement with that of TM-β-CD, indicating Li+ is more likely to locate in the small rim of DM-β-CD's hydrophobic cavity. The DFT results showed through electrostatic interaction, one Li+ can strongly conjugate to four neighboring oxygen atoms. For the (α-CD+Li)+ complex, one Li+ may also situate the small rim of α-CD's hydrophobic cavity to form a non-specific host-guest complex.展开更多
Diethyl flavon-7-yl phosphate was synthesized by modified Atheron-Todd reaction. The result of ESI shows that the phosphated flavonoids possess stronger binding affinities toward proteins such as myoglobin, insulin an...Diethyl flavon-7-yl phosphate was synthesized by modified Atheron-Todd reaction. The result of ESI shows that the phosphated flavonoids possess stronger binding affinities toward proteins such as myoglobin, insulin and lysozyme and are easier to form the non-covalent complexes with them.展开更多
The non-covalent complexes between lappaconitine (LA) and β-cyclodextrin (β-CD) have been detected and characterized by electrospray ionization combined with ion trap tandem mass spectrometry (ESI-MSn). The ex...The non-covalent complexes between lappaconitine (LA) and β-cyclodextrin (β-CD) have been detected and characterized by electrospray ionization combined with ion trap tandem mass spectrometry (ESI-MSn). The experimental results showed that only 1:1 non-covalent complex can be formed in different starting molar ratios of LA to β-CD. Furthermore, the diagnostic fragmentation of the β-CD-LA complex, with a significant contribution of covalent fragmentation of LA leaving the N-acetyl anthranoyl (AN) moiety inserted to β-CD, provided the convincing evidence for the formation of non-covalent complex between LA and β-CD and the cite of LA molecule included to cavity of β-CD assigned to AN residue.展开更多
Daidzein (7,4'-dihydroxyisoflavone) was phosphorylated by a modified Atherton-Todd reaction. The structures of the five target product, were determined by X-ray, IR, NMR and ESI-MS. Electrospray ionization results ...Daidzein (7,4'-dihydroxyisoflavone) was phosphorylated by a modified Atherton-Todd reaction. The structures of the five target product, were determined by X-ray, IR, NMR and ESI-MS. Electrospray ionization results show that in the gas phase all the phosphorylated daidzein derivatives could form non-covalent complexes with the protein lysozyme, while non-covalent complexes were not detected in the mixed solution of daidzein with lysozyme. Relative affinity of every non-covalent complex was obtained according to its different decomposition orifice voltage.展开更多
The synergistic effect of conventional flame-retardant elements and graphene has received extensive attention in the development of a new class of flame retardants. Compared to covalent modification, the noncovalent s...The synergistic effect of conventional flame-retardant elements and graphene has received extensive attention in the development of a new class of flame retardants. Compared to covalent modification, the noncovalent strategy is simpler and expeditious and entirely preserves the original quality of graphene. Thus, non-covalently functionalized graphene oxide(FGO) with a phosphorus–nitrogen compound was successfully prepared via a one-pot process in this study. Polyethyleneimine and FGO were alternatively deposited on the surface of a poly(vinyl alcohol)(PVA) film via layer-by-layer assembly driven by electrostatic interaction, imparting excellent flame retardancy to the coated PVA film. The multilayer FGO-based coating formed a protective shield encapsulating the PVA matrix, effectively blocking the transfer of heat and mass during combustion. The coated PVA has a higher initial decomposition temperature of about 260 °C and a nearly 60% reduction in total heat release than neat PVA does. Our results may have a promising prospect for flame-retardant polymers.展开更多
A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. C...A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with α = 22.281(2), b = 7.3959(7), c = 24.978(3) ?, β = 90.876(10), V = 4115.6(7) ?3, Z = 8, C20H22N4O8Ni, Mr = 505.13, Dc = 1.630 g/cm3, μ = 1.001 mm-1, S = 1.080, F(000) = 2096, the final R = 0.452 and wR = 0.1152 for 9380 observed reflections (I 〉 2σ(I)). The result of X-ray diffraction analysis revealed three different kinds of Ni(II) centre mononuclear molecules in the asymmetric unit. The independent mononuclear units are bridged to form a three-dimensional supramolecular polymer by extensive hydrogen bonds and C–H… non-covalent bonding interactions.展开更多
The non-covalent interaction between apigenin (API) and different functional monomers (α-methylacrylic acid (MAA), acrylamide (AM), 2-vinylpyridine (2-Vpy) and combined functional monomers (AM/2-Vpy)) was determined ...The non-covalent interaction between apigenin (API) and different functional monomers (α-methylacrylic acid (MAA), acrylamide (AM), 2-vinylpyridine (2-Vpy) and combined functional monomers (AM/2-Vpy)) was determined by UV spectrometry, and a series of apigenin molecularly imprinted polymers (API-MIPs) was synthesized with different functional monomers through molecular imprinting technology. The relationship between the non-covalent interaction of template/functional monomer and absorption of MIPs also was studied. The results showed that the order of the strength of the non-covalent interaction between API and different functional monomers in tetrahydrofuran (THF) is as follows: 2-Vpy> AM/2-Vpy>AM>MAA, which is positive correlation to the absorption capability of corresponding MIPs, and 2-Vpy is the optimum functional monomer among the used monomer for preparing API- MIPs.展开更多
Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond prot...Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond protein(AP)and SA.In this study,structure-affinity interaction between SA and AP,structure and antioxidant activity of proteins were investigated.Different mathematical models showed that Ka of binding SA and AP were 3.27×10^4 L/mol and 3.08×10^4 L/mol.CD(Circular dichroism)spectroscopy and FT-IR(Fourier transform infrared)spectroscopy showed that the amount of random coil andα-helix decreased whileβ-sheet increased in AP-SA complex.In combination,the interaction model of AP-SA complex was static quenching and attributed to hydrophobic interaction.Further,AP-SA complex exerted better DPPH radical scavenging ability(36.97±0.78%),ABTS+radical scavenging ability(47.26±0.45%),and higher ORAC value(2.41±0.23 M trolox/g)compared to AP.In the further,SA can be applied in protein matrix to improve film stability,gel strength and restraining fat oxidation degradation.展开更多
Vectored non-covalent interactions—mainly hydrogen bonding and aromatic interactions—extensively contribute to(bio)-organic self-assembling processes and significantly impact the physicochemical properties of the as...Vectored non-covalent interactions—mainly hydrogen bonding and aromatic interactions—extensively contribute to(bio)-organic self-assembling processes and significantly impact the physicochemical properties of the associated superstructures.However,vectored non-covalent interaction-driven assembly occursmainly along one-dimensional(1D)or three-dimensional(3D)directions,and a two-dimensional(2D)orientation,especially that of multilayered,graphene-like assembly,has been reported less.In this present research,by introducing amino,hydroxyl,and phenyl moieties to the triazine skeleton,supramolecular layered assembly is achieved by vectored non-covalent interactions.The planar hydrogen bonding network results in high stability,with a thermal sustainability of up to about 330°C and a Young’s modulus of up to about 40 GPa.Upon introducing wrinkles by biased hydrogen bonding or aromatic interactions to disturb the planar organization,the stability attenuates.However,the intertwined aromatic interactions prompt a red edge excitation shift effect inside the assemblies,inducing broad-spectrum fluorescence covering nearly the entire visible light region(400–650 nm).We show that bionic,superhydrophobic,pillar-like arrays with contact angles of up to about 170°can be engineered by aromatic interactions using a physical vapor deposition approach,which cannot be realized through hydrogen bonding.Our findings show the feasibility of 2D assembly with engineerable properties by modulating vectored non-covalent interactions.展开更多
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S...Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.展开更多
In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability t...In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.展开更多
A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstru...A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.展开更多
This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to co...This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to consider the complexity of quantum states, offering a more nuanced understanding of measurement precision. By adding a complexity term to the uncertainty relation, we explore nonlinear modifications such as polynomial, exponential, and logarithmic functions. Rigorous mathematical derivations demonstrate the consistency of the modified principle with classical quantum mechanics and quantum information theory. We investigate the implications of this modified HUP for various aspects of quantum mechanics, including quantum metrology, quantum algorithms, quantum error correction, and quantum chaos. Additionally, we propose experimental protocols to test the validity of the modified HUP, evaluating their feasibility with current and near-term quantum technologies. This work highlights the importance of quantum complexity in quantum mechanics and provides a refined perspective on the interplay between complexity, entanglement, and uncertainty in quantum systems. The modified HUP has the potential to stimulate interdisciplinary research at the intersection of quantum physics, information theory, and complexity theory, with significant implications for the development of quantum technologies and the understanding of the quantum-to-classical transition.展开更多
Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features...Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features of magnetic reconnection have been well developed and applied successfully to systems with symmetrical property,such as toroidal fusion plasmas and laboratory experiments with an axial symmetry.But in asymmetric systems,the 3D features are inevitably different from those in the 2D case.Magnetic reconnection structures in multiple celestial body systems,particularly star-planet-Moon systems,bring fresh insights to the understanding of the 3D geometry of reconnection.Thus,we take magnetic reconnection in an ancient solar-lunar terrestrial magneto-plasma system as an example by using its crucial parameters approximately estimated already and also some specific applications in pathways for energy and matter transports among Earth,ancient Moon,and the interplanetary magnetic field(IMF).Then,magnetic reconnection of the ancient lunar-terrestrial magnetospheres with the IMF is investigated numerically in this work.In a 3D simulation for the Earth-Moon-IMF system,topological features of complex magnetic reconnection configurations and dynamical characteristics of magnetic reconnection processes are studied.It is found that a coupled lunar-terrestrial magnetosphere is formed,and under various IMF orientations,multiple X-points emerge at distinct locations,showing three typical magnetic reconnection structures in such a geometry,i.e.,the X-line,the triple current sheets,and the A-B null pairs.The results can conduce to further understanding of reconnection physics in 3D for plasmas in complex magnetic configurations,and also a possible mechanism for energy and matters transport in evolutions of similar astrophysical systems.展开更多
This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is ...This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.展开更多
As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with ...As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.展开更多
The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to d...The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.展开更多
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16...Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.展开更多
This article is about orthogonal frequency-division multiplexing with quadrature amplitude modulation combined with code division multiplexing access for complex data transmission. It aims to present a method which us...This article is about orthogonal frequency-division multiplexing with quadrature amplitude modulation combined with code division multiplexing access for complex data transmission. It aims to present a method which uses two interfering subsets in order to improve the performance of the transmission scheme. The idea is to spread in a coherent manner some data amongst two different codes belonging to the two different subsets involved in complex orthogonal frequency-division multiplexing with quadrature amplitude modulation and code division multiplexing access. This will improve the useful signal level at the receiving side and therefore improve the decoding process especially at low signal to noise ratio. However, this procedure implies some interference with other codes therefore creating a certain noise which is noticeable at high signal to noise ratio.展开更多
Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of part...Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of particles,as well as the discharge glow,strongly depend on discharge parameters.However,traditional manual diagnosis methods for recognizing discharge parameters from discharge images are complicated to operate with low accuracy,time-consuming and high requirement of instruments.To solve these problems,by combining the two mechanisms of attention mechanism(strengthening the extraction of the channel feature)and shortcut connection(enabling the input information to be directly transmitted to deep networks and avoiding the disappearance or explosion of gradients),the network of squeeze and excitation convolution with shortcut(SECS)for complex plasma image recognition is proposed to effectively improve the model performance.The results show that the accuracy,precision,recall and F1-Score of our model are superior to other models in complex plasma image recognition,and the recognition accuracy reaches 97.38%.Moreover,the recognition accuracy for the Flowers and Chest X-ray publicly available data sets reaches 97.85%and 98.65%,respectively,and our model has robustness.This study shows that the proposed model provides a new method for the diagnosis of complex plasma images and also provides technical support for the application of plasma in industrial production.展开更多
文摘To investigate the non-covalent interaction between cyclodextrins (CD) and lithium ion, a stoichiometry of α-CD, β-CD, heptakis(2,6-di-O-methyl)-β-CD (DM-β-CD), or heptakis(2,3,6-tri-O-methyl)-β-CD (TM-β-CD) was mixed with lithium salt, respectively, and then incubated at room temperature for 10 min to reach the equilibrium. In posi- tive mode, the electrospray ionization mass spectrometry (ESI-MS) results demonstrated that lithium ion can conjugate to α-, β-, DM-β- or TM-β-CD and form 1:1 stoichiometric non-covalent complexes. The binding of the complexes was further confirmed by collision- induced dissociation. The dissociation constants Kdl of four complexes (Li+α-CD, Li+β- CD, Li+DM-β-CD, and Li+TM-β-CD) were determined by mass spectrometric titration. The results showed Kdl were 18.7, 26.7, 33.6, 30.5 μmol/L for the complexes of Li+ with α-CD, β-CD, DM-β-CD, and TM-β-CD, respectively. Kdl for the Li+ complexes of/3-CD is smaller than that of DM-β-CD due to its steric effect of the partial substituted -CH3. The Kdl for the Li+ complexes of DM-β-CD is nearly in agreement with that of TM-β-CD, indicating Li+ is more likely to locate in the small rim of DM-β-CD's hydrophobic cavity. The DFT results showed through electrostatic interaction, one Li+ can strongly conjugate to four neighboring oxygen atoms. For the (α-CD+Li)+ complex, one Li+ may also situate the small rim of α-CD's hydrophobic cavity to form a non-specific host-guest complex.
文摘Diethyl flavon-7-yl phosphate was synthesized by modified Atheron-Todd reaction. The result of ESI shows that the phosphated flavonoids possess stronger binding affinities toward proteins such as myoglobin, insulin and lysozyme and are easier to form the non-covalent complexes with them.
基金supported by the National Natural Science Foundation of China(No.30472134,20173057)the State Great Basic Research Project of China(No.2003CCA03100)the Great Research Project of Chinese Academy of Sciences(No.KGCX2-SW-213-06).
文摘The non-covalent complexes between lappaconitine (LA) and β-cyclodextrin (β-CD) have been detected and characterized by electrospray ionization combined with ion trap tandem mass spectrometry (ESI-MSn). The experimental results showed that only 1:1 non-covalent complex can be formed in different starting molar ratios of LA to β-CD. Furthermore, the diagnostic fragmentation of the β-CD-LA complex, with a significant contribution of covalent fragmentation of LA leaving the N-acetyl anthranoyl (AN) moiety inserted to β-CD, provided the convincing evidence for the formation of non-covalent complex between LA and β-CD and the cite of LA molecule included to cavity of β-CD assigned to AN residue.
基金Project supported by the National Natural Science Foundation of China (Nos. 20132020 and 20175026) and Henan Academic Foundation of Science and Technology.
文摘Daidzein (7,4'-dihydroxyisoflavone) was phosphorylated by a modified Atherton-Todd reaction. The structures of the five target product, were determined by X-ray, IR, NMR and ESI-MS. Electrospray ionization results show that in the gas phase all the phosphorylated daidzein derivatives could form non-covalent complexes with the protein lysozyme, while non-covalent complexes were not detected in the mixed solution of daidzein with lysozyme. Relative affinity of every non-covalent complex was obtained according to its different decomposition orifice voltage.
基金supported by National Natural Science Foundation of China (No. 51473095)the Program of Innovative Research Team for Young Scientists of Sichuan Province (2016TD0010)
文摘The synergistic effect of conventional flame-retardant elements and graphene has received extensive attention in the development of a new class of flame retardants. Compared to covalent modification, the noncovalent strategy is simpler and expeditious and entirely preserves the original quality of graphene. Thus, non-covalently functionalized graphene oxide(FGO) with a phosphorus–nitrogen compound was successfully prepared via a one-pot process in this study. Polyethyleneimine and FGO were alternatively deposited on the surface of a poly(vinyl alcohol)(PVA) film via layer-by-layer assembly driven by electrostatic interaction, imparting excellent flame retardancy to the coated PVA film. The multilayer FGO-based coating formed a protective shield encapsulating the PVA matrix, effectively blocking the transfer of heat and mass during combustion. The coated PVA has a higher initial decomposition temperature of about 260 °C and a nearly 60% reduction in total heat release than neat PVA does. Our results may have a promising prospect for flame-retardant polymers.
基金supported by the National Natural Science Foundation of China(Nos.21171040 and 21302019)
文摘A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with α = 22.281(2), b = 7.3959(7), c = 24.978(3) ?, β = 90.876(10), V = 4115.6(7) ?3, Z = 8, C20H22N4O8Ni, Mr = 505.13, Dc = 1.630 g/cm3, μ = 1.001 mm-1, S = 1.080, F(000) = 2096, the final R = 0.452 and wR = 0.1152 for 9380 observed reflections (I 〉 2σ(I)). The result of X-ray diffraction analysis revealed three different kinds of Ni(II) centre mononuclear molecules in the asymmetric unit. The independent mononuclear units are bridged to form a three-dimensional supramolecular polymer by extensive hydrogen bonds and C–H… non-covalent bonding interactions.
基金National Natural Science Foundation of China (No. 20877036)Advanced Talent Foundation of Jiangsu University (No. 04JBG017).
文摘The non-covalent interaction between apigenin (API) and different functional monomers (α-methylacrylic acid (MAA), acrylamide (AM), 2-vinylpyridine (2-Vpy) and combined functional monomers (AM/2-Vpy)) was determined by UV spectrometry, and a series of apigenin molecularly imprinted polymers (API-MIPs) was synthesized with different functional monomers through molecular imprinting technology. The relationship between the non-covalent interaction of template/functional monomer and absorption of MIPs also was studied. The results showed that the order of the strength of the non-covalent interaction between API and different functional monomers in tetrahydrofuran (THF) is as follows: 2-Vpy> AM/2-Vpy>AM>MAA, which is positive correlation to the absorption capability of corresponding MIPs, and 2-Vpy is the optimum functional monomer among the used monomer for preparing API- MIPs.
基金supported by the National Key Research and Development Program of China (2016YFD0401401)The Technological innovation project of Hubei Province (2017ABA142)+2 种基金The Science and Technology Plan Project of Tibet Autonomous Region (XZ201901NA04)The Science and Technology Plan Project of Hunan Science (2017NK2212)The Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-OCRI)
文摘Plant phenolic acids are good sources of antioxidants and sinapic acid(SA)is one of them that can be applied in protein-based food system.However,little research is available regarding interactions between almond protein(AP)and SA.In this study,structure-affinity interaction between SA and AP,structure and antioxidant activity of proteins were investigated.Different mathematical models showed that Ka of binding SA and AP were 3.27×10^4 L/mol and 3.08×10^4 L/mol.CD(Circular dichroism)spectroscopy and FT-IR(Fourier transform infrared)spectroscopy showed that the amount of random coil andα-helix decreased whileβ-sheet increased in AP-SA complex.In combination,the interaction model of AP-SA complex was static quenching and attributed to hydrophobic interaction.Further,AP-SA complex exerted better DPPH radical scavenging ability(36.97±0.78%),ABTS+radical scavenging ability(47.26±0.45%),and higher ORAC value(2.41±0.23 M trolox/g)compared to AP.In the further,SA can be applied in protein matrix to improve film stability,gel strength and restraining fat oxidation degradation.
基金supported by the Fund for Creative Research Groups of National Natural Science Foundation of China (No. 51821093)the National Natural Science Foundation of China (Nos. 52175551, 52075484)(KT and DM)+2 种基金the National Key Research and Development Program (SQ2021YFE010405)(KT)Science Foundation Ireland (SFI) through awards Nos. 15/CDA/3491and 12/RC/2275_P2 (DT)computing resources at the SFI/Higher Education Authority Irish Center for High-End Computing (ICHEC)(SG and DT)
文摘Vectored non-covalent interactions—mainly hydrogen bonding and aromatic interactions—extensively contribute to(bio)-organic self-assembling processes and significantly impact the physicochemical properties of the associated superstructures.However,vectored non-covalent interaction-driven assembly occursmainly along one-dimensional(1D)or three-dimensional(3D)directions,and a two-dimensional(2D)orientation,especially that of multilayered,graphene-like assembly,has been reported less.In this present research,by introducing amino,hydroxyl,and phenyl moieties to the triazine skeleton,supramolecular layered assembly is achieved by vectored non-covalent interactions.The planar hydrogen bonding network results in high stability,with a thermal sustainability of up to about 330°C and a Young’s modulus of up to about 40 GPa.Upon introducing wrinkles by biased hydrogen bonding or aromatic interactions to disturb the planar organization,the stability attenuates.However,the intertwined aromatic interactions prompt a red edge excitation shift effect inside the assemblies,inducing broad-spectrum fluorescence covering nearly the entire visible light region(400–650 nm).We show that bionic,superhydrophobic,pillar-like arrays with contact angles of up to about 170°can be engineered by aromatic interactions using a physical vapor deposition approach,which cannot be realized through hydrogen bonding.Our findings show the feasibility of 2D assembly with engineerable properties by modulating vectored non-covalent interactions.
基金supported by the Fundamental Research Funds for the Central Universities(No.20CX05005A)the Major Scientific and Technological Projects of CNPC(No.ZD2019-184-001)+2 种基金the PetroChina Innovation Foundation(No.2018D-5007-0214)the Shandong Provincial Natural Science Foundation(No.ZR2019MEE095)the National Natural Science Foundation of China(No.42174141).
文摘Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275179 and 11875042)the Natural Science Foundation of Shanghai Municipality,China(Grant No.21ZR1443900)。
文摘In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.
基金Supported by Central Government Guided Local Science and Technology Innovation Fund Program(ZY20B13)。
文摘A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.
文摘This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to consider the complexity of quantum states, offering a more nuanced understanding of measurement precision. By adding a complexity term to the uncertainty relation, we explore nonlinear modifications such as polynomial, exponential, and logarithmic functions. Rigorous mathematical derivations demonstrate the consistency of the modified principle with classical quantum mechanics and quantum information theory. We investigate the implications of this modified HUP for various aspects of quantum mechanics, including quantum metrology, quantum algorithms, quantum error correction, and quantum chaos. Additionally, we propose experimental protocols to test the validity of the modified HUP, evaluating their feasibility with current and near-term quantum technologies. This work highlights the importance of quantum complexity in quantum mechanics and provides a refined perspective on the interplay between complexity, entanglement, and uncertainty in quantum systems. The modified HUP has the potential to stimulate interdisciplinary research at the intersection of quantum physics, information theory, and complexity theory, with significant implications for the development of quantum technologies and the understanding of the quantum-to-classical transition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975087,42261134533,and 42011530086)the National Magnetic Confinement Fusion Energy Research and Development Program of China(Grant No.2022YFE03190400)the Heilongjiang Touyan Innovation Team Program,China.
文摘Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features of magnetic reconnection have been well developed and applied successfully to systems with symmetrical property,such as toroidal fusion plasmas and laboratory experiments with an axial symmetry.But in asymmetric systems,the 3D features are inevitably different from those in the 2D case.Magnetic reconnection structures in multiple celestial body systems,particularly star-planet-Moon systems,bring fresh insights to the understanding of the 3D geometry of reconnection.Thus,we take magnetic reconnection in an ancient solar-lunar terrestrial magneto-plasma system as an example by using its crucial parameters approximately estimated already and also some specific applications in pathways for energy and matter transports among Earth,ancient Moon,and the interplanetary magnetic field(IMF).Then,magnetic reconnection of the ancient lunar-terrestrial magnetospheres with the IMF is investigated numerically in this work.In a 3D simulation for the Earth-Moon-IMF system,topological features of complex magnetic reconnection configurations and dynamical characteristics of magnetic reconnection processes are studied.It is found that a coupled lunar-terrestrial magnetosphere is formed,and under various IMF orientations,multiple X-points emerge at distinct locations,showing three typical magnetic reconnection structures in such a geometry,i.e.,the X-line,the triple current sheets,and the A-B null pairs.The results can conduce to further understanding of reconnection physics in 3D for plasmas in complex magnetic configurations,and also a possible mechanism for energy and matters transport in evolutions of similar astrophysical systems.
文摘This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.
基金supported in part by the National Natural Science Foundation Original Exploration Project of China under Grant 62250004the National Natural Science Foundation of China under Grant 62271244+1 种基金the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province under Grant BK20220067the Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.
文摘The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.
基金This study was supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2017ZX07101-002).
文摘Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.
文摘This article is about orthogonal frequency-division multiplexing with quadrature amplitude modulation combined with code division multiplexing access for complex data transmission. It aims to present a method which uses two interfering subsets in order to improve the performance of the transmission scheme. The idea is to spread in a coherent manner some data amongst two different codes belonging to the two different subsets involved in complex orthogonal frequency-division multiplexing with quadrature amplitude modulation and code division multiplexing access. This will improve the useful signal level at the receiving side and therefore improve the decoding process especially at low signal to noise ratio. However, this procedure implies some interference with other codes therefore creating a certain noise which is noticeable at high signal to noise ratio.
基金This study was supported by a grand from the National Natural Science Foundation of China(No.12075315).
文摘Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of particles,as well as the discharge glow,strongly depend on discharge parameters.However,traditional manual diagnosis methods for recognizing discharge parameters from discharge images are complicated to operate with low accuracy,time-consuming and high requirement of instruments.To solve these problems,by combining the two mechanisms of attention mechanism(strengthening the extraction of the channel feature)and shortcut connection(enabling the input information to be directly transmitted to deep networks and avoiding the disappearance or explosion of gradients),the network of squeeze and excitation convolution with shortcut(SECS)for complex plasma image recognition is proposed to effectively improve the model performance.The results show that the accuracy,precision,recall and F1-Score of our model are superior to other models in complex plasma image recognition,and the recognition accuracy reaches 97.38%.Moreover,the recognition accuracy for the Flowers and Chest X-ray publicly available data sets reaches 97.85%and 98.65%,respectively,and our model has robustness.This study shows that the proposed model provides a new method for the diagnosis of complex plasma images and also provides technical support for the application of plasma in industrial production.