Ubiquitous computing systems typically have lots of security problems in the area of identity authentication by means of classical PKI methods. The limited computing resources, the disconnection network, the classific...Ubiquitous computing systems typically have lots of security problems in the area of identity authentication by means of classical PKI methods. The limited computing resources, the disconnection network, the classification requirements of identity authentication, the requirement of trust transfer and cross identity authentication, the bi-directional identity authentication, the security delegation and the simple privacy protection etc are all these unsolved problems. In this paper, a new novel ubiquitous computing identity authentication mechanism, named UCIAMdess, is presented. It is based on D-S Evidence Theory and extended SPKI/SDSI. D-S Evidence Theory is used in UCIAMdess to compute the trust value from the ubiquitous computing environment to the principal or between the different ubiquitous computing environments. SPKI-based authorization is expanded by adding the trust certificate in UCIAMdess to solve above problems in the ubiquitous computing environments. The identity authentication mechanism and the algorithm of certificate reduction are given in the paper to solve the multi-levels trust-correlative identity authentication problems. The performance analyses show that UCIAMdess is a suitable security mechanism in solving the complex ubiquitous computing problems.展开更多
A lossless image secret sharing using a simple Boolean operation is proposed. The concept of visual cryptography in the secret sharing scheme is used to redesign a lossless secret sharing scheme. To ensure that the re...A lossless image secret sharing using a simple Boolean operation is proposed. The concept of visual cryptography in the secret sharing scheme is used to redesign a lossless secret sharing scheme. To ensure that the reconstructed image is the true secret image, an authentication mechanism is imported into the proposed scheme to verify whether the shadows are authentic before reconstructing the secret image. The proposed scheme delivers much more effective performance than Chen and Wu's scheme.展开更多
Identity management is based on the creation and management of useridentities for granting access to the cloud resources based on the user attributes.The cloud identity and access management (IAM) grants the authoriza...Identity management is based on the creation and management of useridentities for granting access to the cloud resources based on the user attributes.The cloud identity and access management (IAM) grants the authorization tothe end-users to perform different actions on the specified cloud resources. Theauthorizations in the IAM are grouped into roles instead of granting them directlyto the end-users. Due to the multiplicity of cloud locations where data resides anddue to the lack of a centralized user authority for granting or denying cloud userrequests, there must be several security strategies and models to overcome theseissues. Another major concern in IAM services is the excessive or the lack ofaccess level to different users with previously granted authorizations. This paperproposes a comprehensive review of security services and threats. Based on thepresented services and threats, advanced frameworks for IAM that provideauthentication mechanisms in public and private cloud platforms. A threat modelhas been applied to validate the proposed authentication frameworks with different security threats. The proposed models proved high efficiency in protectingcloud platforms from insider attacks, single sign-on failure, brute force attacks,denial of service, user privacy threats, and data privacy threats.展开更多
Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
Data sharing and privacy securing present extensive opportunities and challenges in vehicular network.This paper introducestrust access authentication scheme’as a mechanism to achieve real-time monitoring and promote...Data sharing and privacy securing present extensive opportunities and challenges in vehicular network.This paper introducestrust access authentication scheme’as a mechanism to achieve real-time monitoring and promote collaborative sharing for vehicles.Blockchain,which can provide secure authentication and protected privacy,is a crucial technology.However,traditional cloud computing performs poorly in supplying low-latency and fast-response services for moving vehicles.In this situation,edge computing enabled Blockchain network appeals to be a promising method,where moving vehicles can access storage or computing resource and get authenticated from Blockchain edge nodes directly.In this paper,a hierarchical architecture is proposed consist of vehicular network layer,Blockchain edge layer and Blockchain network layer.Through a authentication mechanism adopting digital signature algorithm,it achieves trusted authentication and ensures valid verification.Moreover,a caching scheme based on many-to-many matching is proposed to minimize average delivery delay of vehicles.Simulation results prove that the proposed caching scheme has a better performance than existing schemes based on central-ized model or edge caching strategy in terms of hit ratio and average delay.展开更多
A self-contained connection of wireless links that functions without any infrastructure is known as Mobile Ad Hoc Network(MANET).A MANET’s nodes could engage actively and dynamically with one another.However,MAN-ETs,...A self-contained connection of wireless links that functions without any infrastructure is known as Mobile Ad Hoc Network(MANET).A MANET’s nodes could engage actively and dynamically with one another.However,MAN-ETs,from the other side,are exposed to severe potential threats that are difficult to counter with present security methods.As a result,several safe communication protocols designed to enhance the secure interaction among MANET nodes.In this research,we offer a reputed optimal routing value among network nodes,secure computations,and misbehavior detection predicated on node’s trust levels with a Hybrid Trust based Reputation Mechanism(HTRM).In addition,the study designs a robust Public Key Infrastructure(PKI)system using the suggested trust evaluation method in terms of“key”generation,which is a crucial component of a PKI cryptosystem.We also concentrate on the solid node authenticating process that relies on pre-authentication.To ensure edge-to-edge security,we assess safe,trustworthy routes to secure computations and authenticate mobile nodes,incorporating uncertainty into the trust management solution.When compared to other protocols,our recommended approach performs better.Finally,we use simulations data and performance evaluation metrics to verify our suggested approach’s validity Our approach outperformed the competing systems in terms of overall end-to-end delay,packet delivery ratio,performance,power consumption,and key-computing time by 3.47%,3.152%,2.169%,and 3.527%,3.762%,significantly.展开更多
The dynamic interaction and collaboration of the loosely coupled entities play a pivotal role for the successful implementation of a Digital Ecosystem environment. However, such interaction and collaboration can only ...The dynamic interaction and collaboration of the loosely coupled entities play a pivotal role for the successful implementation of a Digital Ecosystem environment. However, such interaction and collaboration can only be promoted when information and resources are effortlessly shared, accessed, and utilized by the interacting entities. A major requirement to promote an intensive sharing of resources is the ability to secure and uphold the confidentiality, integrity and non-repudiation of resources. This requirement is extremely important in particular when interactions with the unfamiliar entities occur frequently. In this paper, we present a distributed mechanism for improving resource protection in a Digital Ecosystem environment. This mechanism can be used not only for any secure and reliable transaction, but also for encouraging the collaborative efforts by the Digital Ecosystem community members to play a major role in securing the environment. Public Key Infrastructure is also employed to provide a strong protection for its access workflows.展开更多
Cooperative jamming(CJ)is one of the important methods to solve security problems of underwater acoustic sensor networks(UASNs).In this paper,we propose a Cooperative Jamming Scheme based on Node Authentication for UA...Cooperative jamming(CJ)is one of the important methods to solve security problems of underwater acoustic sensor networks(UASNs).In this paper,we propose a Cooperative Jamming Scheme based on Node Authentication for UASNs to improve the effect of CJ by selecting suitable jamming source for found illegal nodes.In the node authentication,all nodes will be identified by their trust value(TV).TV is calculated according to three types of evidence:channel-based trust evidence,behavior-based trust evidence and energy-based trust evidence.Besides,to deal with cases where legal nodes may be suspected,the historical TV and trust redemption will be considered when calculating TV.In cooperative jamming,according to the link quality,several nodes are selected to jam illegal nodes.Both simulation and field experiment show that the proposed scheme can accurately find the illegal nodes in the time-vary channel and improve the security of the network.展开更多
基金Supported by the Ministry of Educationin China (No.104086)
文摘Ubiquitous computing systems typically have lots of security problems in the area of identity authentication by means of classical PKI methods. The limited computing resources, the disconnection network, the classification requirements of identity authentication, the requirement of trust transfer and cross identity authentication, the bi-directional identity authentication, the security delegation and the simple privacy protection etc are all these unsolved problems. In this paper, a new novel ubiquitous computing identity authentication mechanism, named UCIAMdess, is presented. It is based on D-S Evidence Theory and extended SPKI/SDSI. D-S Evidence Theory is used in UCIAMdess to compute the trust value from the ubiquitous computing environment to the principal or between the different ubiquitous computing environments. SPKI-based authorization is expanded by adding the trust certificate in UCIAMdess to solve above problems in the ubiquitous computing environments. The identity authentication mechanism and the algorithm of certificate reduction are given in the paper to solve the multi-levels trust-correlative identity authentication problems. The performance analyses show that UCIAMdess is a suitable security mechanism in solving the complex ubiquitous computing problems.
基金supported by the National Science Council under Grant No. NSC100-2218-E-468-002-MY2
文摘A lossless image secret sharing using a simple Boolean operation is proposed. The concept of visual cryptography in the secret sharing scheme is used to redesign a lossless secret sharing scheme. To ensure that the reconstructed image is the true secret image, an authentication mechanism is imported into the proposed scheme to verify whether the shadows are authentic before reconstructing the secret image. The proposed scheme delivers much more effective performance than Chen and Wu's scheme.
基金funded by the Deanship of Scientific Research at Jouf University under Grant No.(DSR-2021-02-0303).
文摘Identity management is based on the creation and management of useridentities for granting access to the cloud resources based on the user attributes.The cloud identity and access management (IAM) grants the authorization tothe end-users to perform different actions on the specified cloud resources. Theauthorizations in the IAM are grouped into roles instead of granting them directlyto the end-users. Due to the multiplicity of cloud locations where data resides anddue to the lack of a centralized user authority for granting or denying cloud userrequests, there must be several security strategies and models to overcome theseissues. Another major concern in IAM services is the excessive or the lack ofaccess level to different users with previously granted authorizations. This paperproposes a comprehensive review of security services and threats. Based on thepresented services and threats, advanced frameworks for IAM that provideauthentication mechanisms in public and private cloud platforms. A threat modelhas been applied to validate the proposed authentication frameworks with different security threats. The proposed models proved high efficiency in protectingcloud platforms from insider attacks, single sign-on failure, brute force attacks,denial of service, user privacy threats, and data privacy threats.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
基金support by Research on Key Technologies of Dynamically Secure Identity Authentication and Risk Control of Power Business in the Science and Technology Project of State Grid Electric Power Company(No.5204XA19003F)National Natural Science Foundation of China(Grant No.601702048)
文摘Data sharing and privacy securing present extensive opportunities and challenges in vehicular network.This paper introducestrust access authentication scheme’as a mechanism to achieve real-time monitoring and promote collaborative sharing for vehicles.Blockchain,which can provide secure authentication and protected privacy,is a crucial technology.However,traditional cloud computing performs poorly in supplying low-latency and fast-response services for moving vehicles.In this situation,edge computing enabled Blockchain network appeals to be a promising method,where moving vehicles can access storage or computing resource and get authenticated from Blockchain edge nodes directly.In this paper,a hierarchical architecture is proposed consist of vehicular network layer,Blockchain edge layer and Blockchain network layer.Through a authentication mechanism adopting digital signature algorithm,it achieves trusted authentication and ensures valid verification.Moreover,a caching scheme based on many-to-many matching is proposed to minimize average delivery delay of vehicles.Simulation results prove that the proposed caching scheme has a better performance than existing schemes based on central-ized model or edge caching strategy in terms of hit ratio and average delay.
文摘A self-contained connection of wireless links that functions without any infrastructure is known as Mobile Ad Hoc Network(MANET).A MANET’s nodes could engage actively and dynamically with one another.However,MAN-ETs,from the other side,are exposed to severe potential threats that are difficult to counter with present security methods.As a result,several safe communication protocols designed to enhance the secure interaction among MANET nodes.In this research,we offer a reputed optimal routing value among network nodes,secure computations,and misbehavior detection predicated on node’s trust levels with a Hybrid Trust based Reputation Mechanism(HTRM).In addition,the study designs a robust Public Key Infrastructure(PKI)system using the suggested trust evaluation method in terms of“key”generation,which is a crucial component of a PKI cryptosystem.We also concentrate on the solid node authenticating process that relies on pre-authentication.To ensure edge-to-edge security,we assess safe,trustworthy routes to secure computations and authenticate mobile nodes,incorporating uncertainty into the trust management solution.When compared to other protocols,our recommended approach performs better.Finally,we use simulations data and performance evaluation metrics to verify our suggested approach’s validity Our approach outperformed the competing systems in terms of overall end-to-end delay,packet delivery ratio,performance,power consumption,and key-computing time by 3.47%,3.152%,2.169%,and 3.527%,3.762%,significantly.
文摘The dynamic interaction and collaboration of the loosely coupled entities play a pivotal role for the successful implementation of a Digital Ecosystem environment. However, such interaction and collaboration can only be promoted when information and resources are effortlessly shared, accessed, and utilized by the interacting entities. A major requirement to promote an intensive sharing of resources is the ability to secure and uphold the confidentiality, integrity and non-repudiation of resources. This requirement is extremely important in particular when interactions with the unfamiliar entities occur frequently. In this paper, we present a distributed mechanism for improving resource protection in a Digital Ecosystem environment. This mechanism can be used not only for any secure and reliable transaction, but also for encouraging the collaborative efforts by the Digital Ecosystem community members to play a major role in securing the environment. Public Key Infrastructure is also employed to provide a strong protection for its access workflows.
基金Supported by the National Natural Science Foundation of China under Grant No.62171310the Marine Defense Innovation Fund JJ-2020-701-09Lanzhou Jiaotong University-Tianjin University Co-Funding under Grant No.2022064。
文摘Cooperative jamming(CJ)is one of the important methods to solve security problems of underwater acoustic sensor networks(UASNs).In this paper,we propose a Cooperative Jamming Scheme based on Node Authentication for UASNs to improve the effect of CJ by selecting suitable jamming source for found illegal nodes.In the node authentication,all nodes will be identified by their trust value(TV).TV is calculated according to three types of evidence:channel-based trust evidence,behavior-based trust evidence and energy-based trust evidence.Besides,to deal with cases where legal nodes may be suspected,the historical TV and trust redemption will be considered when calculating TV.In cooperative jamming,according to the link quality,several nodes are selected to jam illegal nodes.Both simulation and field experiment show that the proposed scheme can accurately find the illegal nodes in the time-vary channel and improve the security of the network.