Terahertz(THz) radiation can be generated due to the instability of THz plasma waves in field-effect transistors(FETs). In this work, we discuss the instability of THz plasma waves in the channel of FETs with spin and...Terahertz(THz) radiation can be generated due to the instability of THz plasma waves in field-effect transistors(FETs). In this work, we discuss the instability of THz plasma waves in the channel of FETs with spin and quantum effects under non-ideal boundary conditions. We obtain a linear dispersion relation by using the hydrodynamic equation, Maxwell equation and spin equation. The influence of source capacitance, drain capacitance, spin effects, quantum effects and channel width on the instability of THz plasma waves under the non-ideal boundary conditions is investigated in great detail. The results of numerical simulation show that the THz plasma wave is unstable when the drain capacitance is smaller than the source capacitance;the oscillation frequency with asymmetric boundary conditions is smaller than that under non-ideal boundary conditions;the instability gain of THz plasma waves becomes lower under non-ideal boundary conditions. This finding provides a new idea for finding efficient THz radiation sources and opens up a new mechanism for the development of THz technology.展开更多
In renewable power generation systems,ensuring the synchronization of the inverter and the power grid is crucial for the stable operation of grid-connected inverters.Nowadays,the phase-locked loop(PLL)technology has b...In renewable power generation systems,ensuring the synchronization of the inverter and the power grid is crucial for the stable operation of grid-connected inverters.Nowadays,the phase-locked loop(PLL)technology has become a widely used grid synchronization method because of its simple implementation and robustness under various grid conditions.Even though a lot of PLLs have been proposed,an overview and comparative analysis of multiple PLLs can be helpful for practical applications.In addition,the weak grid condition is a great challenge for the system.Therefore,this study first presents an overview of the existing PLLs together with their general structures and basic working principles.Depending on the implementation of the phase detector,the PLL can be divided into three categories:power-based PLL(pPLL),orthogonal-signalgenerator-based PLL(OSG-PLL)and adaptive-filter-based PLL(AF-PLL).Then,from the above classification,seven typical single-phase PLLs are selected for further study.Finally,some test results are given,and a comprehensive evaluation of the selected PLLs under different grid conditions is conducted.展开更多
In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered gri...In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.展开更多
-Air-conditioning (AC) systems are the major energy consumption units in residential and commercial buildings. In the context of smart grid, optimizing AC operations leads to substantial saving in energy consumption...-Air-conditioning (AC) systems are the major energy consumption units in residential and commercial buildings. In the context of smart grid, optimizing AC operations leads to substantial saving in energy consumption, reducing the consumer's bill and contributing to the environment by minimizing carbon emissions from generating stations. This paper presents a distributed AC energy management system for buildings by using networked master-slaves controller architecture. The proposed system was designed, simulated, and experimentally tested by using real AC units in a students' residence hall. Based on the students' class schedules, several operational scenarios were implemented and tested. The proposed system implementation leads to a 40% to 60% saving of the consumed energy by the tested units. The same energy management scheme can be applied and implemented in other commercial and residential buildings.展开更多
In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed...In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm.展开更多
考虑到海上风电出力的随机性以及日益突出的生态环境问题,以含柔性直流输电技术(voltagesource converter high voltage direct current,VSC-HVDC)的交直流系统为研究对象,提出了考虑条件风险价值(conditional valueatrisk,CVaR)的两阶...考虑到海上风电出力的随机性以及日益突出的生态环境问题,以含柔性直流输电技术(voltagesource converter high voltage direct current,VSC-HVDC)的交直流系统为研究对象,提出了考虑条件风险价值(conditional valueatrisk,CVaR)的两阶段分布鲁棒低碳经济优化模型,构建了基于Kullback-Leibler(KL)散度的概率分布模糊集,同时利用条件风险价值量化了极端场景下的尾部风险,使得模型能够同时考虑概率分布不确定性以及处于最坏概率分布中极端场景下的尾部损失;此外,将阶梯型碳交易机制并入所提分布鲁棒模型中,通过合理利用柔性资源和储能装置,增强系统运行的灵活性,在兼顾运行风险的前提下,降低碳排放量的目标。再者,为了提高计算效率,在列和约束生成算法(column-and-constraint generation method,C&CG)和Multi-cut Benders分解算法的基础上提出了双循环分解算法。最后,在基于改进的IEEE RTS 79测试系统中验证了所提模型及算法的有效性。展开更多
基金funded by National Natural Science Foundation of China (No. 12065015)the Hongliu First-level Discipline Construction Project of Lanzhou University of Technology。
文摘Terahertz(THz) radiation can be generated due to the instability of THz plasma waves in field-effect transistors(FETs). In this work, we discuss the instability of THz plasma waves in the channel of FETs with spin and quantum effects under non-ideal boundary conditions. We obtain a linear dispersion relation by using the hydrodynamic equation, Maxwell equation and spin equation. The influence of source capacitance, drain capacitance, spin effects, quantum effects and channel width on the instability of THz plasma waves under the non-ideal boundary conditions is investigated in great detail. The results of numerical simulation show that the THz plasma wave is unstable when the drain capacitance is smaller than the source capacitance;the oscillation frequency with asymmetric boundary conditions is smaller than that under non-ideal boundary conditions;the instability gain of THz plasma waves becomes lower under non-ideal boundary conditions. This finding provides a new idea for finding efficient THz radiation sources and opens up a new mechanism for the development of THz technology.
基金This work is supported in part by the National Natural Science Foundation of China(No.51807089,51877104)in part by the Natural Science Foundation of Jiangsu Province(No.BK20180432).
文摘In renewable power generation systems,ensuring the synchronization of the inverter and the power grid is crucial for the stable operation of grid-connected inverters.Nowadays,the phase-locked loop(PLL)technology has become a widely used grid synchronization method because of its simple implementation and robustness under various grid conditions.Even though a lot of PLLs have been proposed,an overview and comparative analysis of multiple PLLs can be helpful for practical applications.In addition,the weak grid condition is a great challenge for the system.Therefore,this study first presents an overview of the existing PLLs together with their general structures and basic working principles.Depending on the implementation of the phase detector,the PLL can be divided into three categories:power-based PLL(pPLL),orthogonal-signalgenerator-based PLL(OSG-PLL)and adaptive-filter-based PLL(AF-PLL).Then,from the above classification,seven typical single-phase PLLs are selected for further study.Finally,some test results are given,and a comprehensive evaluation of the selected PLLs under different grid conditions is conducted.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No. 41074100)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No. NCET-10-0812)
文摘In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.
基金supported by the Office of the Vice Chancellor for Students’ Affair-Residential Dormitories Department, American University of Sharjah, UAE
文摘-Air-conditioning (AC) systems are the major energy consumption units in residential and commercial buildings. In the context of smart grid, optimizing AC operations leads to substantial saving in energy consumption, reducing the consumer's bill and contributing to the environment by minimizing carbon emissions from generating stations. This paper presents a distributed AC energy management system for buildings by using networked master-slaves controller architecture. The proposed system was designed, simulated, and experimentally tested by using real AC units in a students' residence hall. Based on the students' class schedules, several operational scenarios were implemented and tested. The proposed system implementation leads to a 40% to 60% saving of the consumed energy by the tested units. The same energy management scheme can be applied and implemented in other commercial and residential buildings.
文摘In this paper, we consider the mixed Navier-Stokes/Darcy model with BeaversJoseph interface conditions. Based on two-grid discretizations, a local and parallel finite element algorithm for this mixed model is proposed and analyzed. Optimal errors are obtained and numerical experiments are presented to show the efficiency and effectiveness of the local and parallel finite element algorithm.
文摘考虑到海上风电出力的随机性以及日益突出的生态环境问题,以含柔性直流输电技术(voltagesource converter high voltage direct current,VSC-HVDC)的交直流系统为研究对象,提出了考虑条件风险价值(conditional valueatrisk,CVaR)的两阶段分布鲁棒低碳经济优化模型,构建了基于Kullback-Leibler(KL)散度的概率分布模糊集,同时利用条件风险价值量化了极端场景下的尾部风险,使得模型能够同时考虑概率分布不确定性以及处于最坏概率分布中极端场景下的尾部损失;此外,将阶梯型碳交易机制并入所提分布鲁棒模型中,通过合理利用柔性资源和储能装置,增强系统运行的灵活性,在兼顾运行风险的前提下,降低碳排放量的目标。再者,为了提高计算效率,在列和约束生成算法(column-and-constraint generation method,C&CG)和Multi-cut Benders分解算法的基础上提出了双循环分解算法。最后,在基于改进的IEEE RTS 79测试系统中验证了所提模型及算法的有效性。