期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Hydroxyapatitc Nanoparticles on K562 Cells in vitro 被引量:2
1
作者 CHEN Pei DAI Honglian +2 位作者 HAN Yingchao YIN Meizhen LI Shipu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第2期222-224,共3页
Stable and single-dispersed hydroxyapatite (HAP) nanoparticles were synthesized with ultrasonic-assisted method. HAP nanoparticles were characterized by dynamic light scattering, XRD (X-ray diffraction) and TEM (... Stable and single-dispersed hydroxyapatite (HAP) nanoparticles were synthesized with ultrasonic-assisted method. HAP nanoparticles were characterized by dynamic light scattering, XRD (X-ray diffraction) and TEM (Transmission Electron Microscopy). The effect of HAP nanoparticles on the K562 human myelogenous leukemia cell line was investigated by MTT assay and cell count test, and the mechanism was studied through the changes of cell cycle and ultrastructure. The results showed that HAP nanoparticles inhibited the proliferation of K562 cells dramatically in vitro. HAP nanoparticles entered the cytoplasm of K562 cells and the cells were arrested at G/M phase, thus, the cells died directly. 展开更多
关键词 hydroxyapatite(HAP) nanoparticles K562 cells MTT assay cell cycle
下载PDF
Cloning and Functional Analysis of Porcine Cycling A
2
作者 Li Fan Qinghai Tang Yanming Zhang Wei Liu Gang Tong 《Journal of Animal Science and Biotechnology》 SCIE CAS 2011年第1期1-8,共8页
Cyclin A is a key regulator of the cell cycle. Its expression may become disrupted in virusinfected cells, leading to deregulation of the cell cycle and increased cell proliferation. Here, we cloned the porcine cyclin... Cyclin A is a key regulator of the cell cycle. Its expression may become disrupted in virusinfected cells, leading to deregulation of the cell cycle and increased cell proliferation. Here, we cloned the porcine cyclin A gene and verified its functionality in swine umbilicus vein endothelial cells (SUVEC). The human cyclin A gene was used to probe databases to clone the pig cyclin A gene electronically. The identified porcine cDNA contained an open reading frame of 1,299 bp, encoding 432 amino acids, the same length as the human cyclin A protein. The porcine cyclin A gene comprises eight exons on chromosome 8. The sequence of the in silico clone and expression of this novel gene were confirmed in SUVEC by reverse transcription PCR. Western blotting of cell lysates from SUVEC transfected with a cyclin A enhanced green fluorescent protein (EGFP) fusion construct revealed a band at approximately 40 kDa. Confocal microscopy of CycA-EGFP-expressing cells showed that the fusion protein was expressed in the nucleus. Flow cytometry demonstrated that more stably expressing SUVEC-CycA-EGFP were in G1 phase (15% to 20% increase) and fewer were in S phase (18% decrease) compared with control ceils. MTS assays showed that the proliferative activity of SUVEC-Cy- cAG-EGFP was significantly higher than that of the control cells. In conclusion, we have cloned the pig cyclin A gene and demonstrated that its biological function is consistent with cyclin A in other mammali- an species. This provides a foundation for future research on the impact of virus infection on cyclin A. 展开更多
关键词 cell cycle cyclin A live cell imaging MTS assay swine umbilicus vein endothelial cell
下载PDF
Systematic Characterization of Cell Cycle Phase-dependent Protein Dynamics and Pathway Activities by High-content Microscopy-assisted Cell Cycle Phenotyping
3
作者 Christopher Bruhn Torsten Kroll Zhao-Qi Wang 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2014年第6期255-265,共11页
Cell cycle progression is coordinated with metabolism, signaling and other complex cellular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern mole... Cell cycle progression is coordinated with metabolism, signaling and other complex cellular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are limited in use due to unphysiological experimental stress, cell type dependence and often low flexibility. Here, we describe high-content microscopy-assisted cell cycle phenotyping(hi MAC), which integrates high-resolution cell cycle profiling of asynchronous cell populations with immunofluorescence microscopy. hi MAC is compatible with cell types from any species and allows for statistically powerful, unbiased, simultaneous analysis of protein interactions, modifications and subcellular localization at all cell cycle stages within a single sample. For illustration, we provide a hi MAC analysis pipeline tailored to study DNA damage response and genomic instability using a 3–4-day protocol,which can be adjusted to any other cell cycle stage-dependent analysis. 展开更多
关键词 hi MAC non-invasive cell cycle assay cell cycle profiling DNA damage markers Imaging
原文传递
Development of LC–MS method for analysis of paclitaxel-inhibited growth and enhanced therapeutic response in human glioblastoma cells 被引量:1
4
作者 Cai-Hou Lin Xue-Xia Lin +3 位作者 Ling Lin Jun-Ming Wang Zhi-Xiong Lin Jin-Ming Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第10期1225-1230,共6页
Glioma stem cells are considered responsible for drug resistance and glioma relapse resulting in poor prognosis in glioblastoma multiforme. SU3 glioma cell is a highly invasive glioma stem cell line from the patients ... Glioma stem cells are considered responsible for drug resistance and glioma relapse resulting in poor prognosis in glioblastoma multiforme. SU3 glioma cell is a highly invasive glioma stem cell line from the patients with glioblastoma multifrome. It is of great significance to study the efficacy and molecular mechanism for anticancer drug effects on SU3 glioma cells. In this work, we develop a liquid chromatography–mass spectrometry(LC–MS) method for direct analysis of the role of drugs(paclitaxel)on SU3 glioma cells at the molecular level. We use the specific fluorescence dyes to evaluate cell viability,the levels of ROS and GSH when the cells were treated with drugs. In addition, the LC–MS platform was successfully employed to detect the amount of 6-O-methylguanine, demonstrating that it is effective to induce cell apoptosis and enhance the cytotoxic response of SU3 glioma cells. The analytical linear equals are Y = 9.49 ? 105 X + 2.42 ? 104 for 6-O-methylguanine(R2= 0.9998) and Y = 4.72 ? 104 X + 2.21 ? 103(R2= 0.9996) for 7-methylguanine. Thus, the combination of cell-specific fluorescence dyes and LC–MS method enables us to reveal the molecular mechanism of paclitaxel-inhibited growth and enhanced therapeutic response in the chemotherapy for glioma multiforme. 展开更多
关键词 LC–MS Drug analysis SU3 glioma cell Paclitaxel cell cycle arrest ROS assay
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部