The population with metabolic dysfunction-associated fatty liver disease(MAFLD)is increasingly common worldwide.Identification of people at risk of progression to advanced stages is necessary to timely offer intervent...The population with metabolic dysfunction-associated fatty liver disease(MAFLD)is increasingly common worldwide.Identification of people at risk of progression to advanced stages is necessary to timely offer interventions and appropriate care.Liver biopsy is currently considered the gold standard for the diagnosis and staging of MAFLD,but it has associated risks and limitations.This has spurred the exploration of non-invasive diagnostics for MAFLD,especially for steatohepatitis and fibrosis.These non-invasive approaches mostly include biomarkers and algorithms derived from anthropometric measurements,serum tests,imaging or stool metagenome profiling.However,they still need rigorous and widespread clinical validation for the diagnostic performance.展开更多
BACKGROUND Non-alcoholic fatty liver disease(NAFLD)with hepatic histological NAFLD activity score≥4 and fibrosis stage F≥2 is regarded as“at risk”non-alcoholic steatohepatitis(NASH).Based on an international conse...BACKGROUND Non-alcoholic fatty liver disease(NAFLD)with hepatic histological NAFLD activity score≥4 and fibrosis stage F≥2 is regarded as“at risk”non-alcoholic steatohepatitis(NASH).Based on an international consensus,NAFLD and NASH were renamed as metabolic dysfunction-associated steatotic liver disease(MASLD)and metabolic dysfunction-associated steatohepatitis(MASH),respectively;hence,we introduced the term“high-risk MASH”.Diagnostic values of seven non-invasive models,including FibroScan-aspartate transaminase(FAST),fibrosis-4(FIB-4),aspartate transaminase to platelet ratio index(APRI),etc.for high-risk MASH have rarely been studied and compared in MASLD.AIM To assess the clinical value of seven non-invasive models as alternatives to liver biopsy for diagnosing high-risk MASH.METHODS A retrospective analysis was conducted on 309 patients diagnosed with NAFLD via liver biopsy at Beijing Ditan Hospital,between January 2012 and December 2020.After screening for MASLD and the exclusion criteria,279 patients wereincluded and categorized into high-risk and non-high-risk MASH groups.Utilizing threshold values of each model,sensitivity,specificity,positive predictive value(PPV),and negative predictive values(NPV),were calculated.Receiver operating characteristic curves were constructed to evaluate their diagnostic efficacy based on the area under the curve(AUROC).RESULTS MASLD diagnostic criteria were met by 99.4%patients with NAFLD.The MASLD population was analyzed in two cohorts:Overall population(279 patients)and the subgroup(117 patients)who underwent liver transient elastography(FibroScan).In the overall population,FIB-4 showed better diagnostic efficacy and higher PPV,with sensitivity,specificity,PPV,NPV,and AUROC of 26.9%,95.2%,73.5%,72.2%,and 0.75.APRI,Forns index,and aspartate transaminase to alanine transaminase ratio(ARR)showed moderate diagnostic efficacy,whereas S index and gamma-glutamyl transpeptidase to platelet ratio(GPR)were relatively weaker.In the subgroup,FAST had the highest diagnostic efficacy,its sensitivity,specificity,PPV,NPV,and AUROC were 44.2%,92.3%,82.1%,67.4%,and 0.82.The FIB-4 AUROC was 0.76.S index and GPR exhibited almost no diagnostic value for high-risk MASH.CONCLUSION FAST and FIB-4 could replace liver biopsy as more effectively diagnostic methods for high-risk MASH compared to APRI,Forns index,ARR,S index,and GPR;FAST is superior to FIB-4.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components...The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.展开更多
Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Hea...Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Health Clinical Center.A total of 115patients underwent ultrasound-guided puncture biopsy,followed by MGIT 960 culture(culture),smear,Gene Xpert MTB/RIF(Xpert),and histopathological examination.These assays were performed to evaluate their effectiveness in diagnosing EPTB in comparison to two different diagnostic criteria:liquid culture and composite reference standard(CRS).Results When CRS was used as the reference standard,the sensitivity and specificity of culture,smear,Xpert,and histopathological examination were(44.83%,89.29%),(51.72%,89.29%),(70.11%,96.43%),and(85.06%,82.14%),respectively.Based on liquid culture tests,the sensitivity and specificity of smear,Xpert,and pathological examination were(66.67%,72.60%),(83.33%,63.01%),and(92.86%,45.21%),respectively.Histopathological examination showed the highest sensitivity but lowest specificity.Further,we found that the combination of Xpert and histopathological examination showed a sensitivity of 90.80%and a specificity of 89.29%.Conclusion Ultrasound-guided puncture sampling is safe and effective for the diagnosis of EPTB.Compared with culture,smear,and Xpert,histopathological examination showed higher sensitivity but lower specificity.The combination of histopathology with Xpert showed the best performance characteristics.展开更多
We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of...We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.展开更多
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect...Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.展开更多
Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and cou...Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications.展开更多
The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is increasing,affecting over one-third of the global population and contributing to significant morbidity and mortality.Diagnosing MAFLD,esp...The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is increasing,affecting over one-third of the global population and contributing to significant morbidity and mortality.Diagnosing MAFLD,especially with advan-ced fibrosis,remains challenging due to the limitations of liver biopsy,the current gold standard.Non-invasive tests are crucial for early detection and management.Among these,the fibrosis-4 index(Fib-4)is widely recommended as a first-line test for screening for liver fibrosis.Advanced imaging techniques,including ultrasound-based elastography and magnetic resonance elastography,offer high accuracy but are limited by cost and availability.Combining biomarkers,such as in the enhanced liver fibrosis score and FibroScan-AST score,enhances diagnostic precision and is recommended to further stratify patients who are considered to be intermediate or high risk from the Fib-4 score.We believe that the future lies in the combined use of biomarkers to improve diagnostic accuracy.展开更多
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp...Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset.展开更多
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s...In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.展开更多
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar...The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.展开更多
Accurate prediction of rockburst proneness is one of challenges for assessing the rockburst risk and selecting effective control measures.This study aims to assess rockburst proneness by considering the energy charact...Accurate prediction of rockburst proneness is one of challenges for assessing the rockburst risk and selecting effective control measures.This study aims to assess rockburst proneness by considering the energy characteristics and qualitative information during rock failure.Several representative rock types in cylindrical and cuboidal sample shapes were tested under uniaxial compression conditions and the failure progress was detected by a high-speed camera.The far-field ejection mass ratio(FEMR)was determined considering the qualitative failure information of the rock samples.The peak-strength energy impact index and the residual elastic energy index were used to quantitatively evaluate the rockburst proneness of both cylindrical and cuboidal samples.Further,the performance of these two indices was analyzed by comparing their estimates with the FEMR.The results show that the accuracy of the residual elastic energy index is significantly higher than that of the peak-strength energy impact index.The residual elastic energy index and the FEMR are in good agreement for both cylindrical and cuboidal rock materials.This is because these two indices can essentially reflect the common energy release mechanism characterized by the mass,ejection velocity,and ejection distance of rock fragments.It suggests that both the FEMR and the residual elastic energy index can be used to accurately measure the rockburst proneness of cylindrical and cuboidal samples based on uniaxial compression test.展开更多
The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ...The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.展开更多
Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resu...Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs.展开更多
Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct ...Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.展开更多
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros...The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.展开更多
The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal ...The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal strain force of the left ventricle with the changes in the left ventricular pressure, allowing earlier detection of possible subclinical cardiac damage in patients, and a more accurate and non-invasive assessment of the patient’s myocardial work performance. In this article, we will discuss the progress of PSL applications in cardiovascular diseases.展开更多
The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wo...The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wolfowitz one-sample runs test for randomness, to present a novel approach for computing this probability, and to compare the four procedures by generating samples of 10 and 11 data points, varying the parameters n<sub>0</sub> (number of zeros) and n<sub>1</sub> (number of ones), as well as the number of runs. Fifty-nine samples are created to replicate the behavior of the distribution of the number of runs with 10 and 11 data points. The exact two-tailed probabilities for the four procedures were compared using Friedman’s test. Given the significant difference in central tendency, post-hoc comparisons were conducted using Conover’s test with Benjamini-Yekutielli correction. It is concluded that the procedures of Real Statistics using Excel and R exhibit some inadequacies in the calculation of the exact two-tailed probability, whereas the new proposal and the SPSS procedure are deemed more suitable. The proposed robust algorithm has a more transparent rationale than the SPSS one, albeit being somewhat more conservative. We recommend its implementation for this test and its application to others, such as the binomial and sign test.展开更多
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
基金Supported by The National Natural Science Foundation of China,No.82104525.
文摘The population with metabolic dysfunction-associated fatty liver disease(MAFLD)is increasingly common worldwide.Identification of people at risk of progression to advanced stages is necessary to timely offer interventions and appropriate care.Liver biopsy is currently considered the gold standard for the diagnosis and staging of MAFLD,but it has associated risks and limitations.This has spurred the exploration of non-invasive diagnostics for MAFLD,especially for steatohepatitis and fibrosis.These non-invasive approaches mostly include biomarkers and algorithms derived from anthropometric measurements,serum tests,imaging or stool metagenome profiling.However,they still need rigorous and widespread clinical validation for the diagnostic performance.
基金Supported by National Natural Science Foundation of China,No.82170591Natural Science Foundation of Beijing,No.7222097.
文摘BACKGROUND Non-alcoholic fatty liver disease(NAFLD)with hepatic histological NAFLD activity score≥4 and fibrosis stage F≥2 is regarded as“at risk”non-alcoholic steatohepatitis(NASH).Based on an international consensus,NAFLD and NASH were renamed as metabolic dysfunction-associated steatotic liver disease(MASLD)and metabolic dysfunction-associated steatohepatitis(MASH),respectively;hence,we introduced the term“high-risk MASH”.Diagnostic values of seven non-invasive models,including FibroScan-aspartate transaminase(FAST),fibrosis-4(FIB-4),aspartate transaminase to platelet ratio index(APRI),etc.for high-risk MASH have rarely been studied and compared in MASLD.AIM To assess the clinical value of seven non-invasive models as alternatives to liver biopsy for diagnosing high-risk MASH.METHODS A retrospective analysis was conducted on 309 patients diagnosed with NAFLD via liver biopsy at Beijing Ditan Hospital,between January 2012 and December 2020.After screening for MASLD and the exclusion criteria,279 patients wereincluded and categorized into high-risk and non-high-risk MASH groups.Utilizing threshold values of each model,sensitivity,specificity,positive predictive value(PPV),and negative predictive values(NPV),were calculated.Receiver operating characteristic curves were constructed to evaluate their diagnostic efficacy based on the area under the curve(AUROC).RESULTS MASLD diagnostic criteria were met by 99.4%patients with NAFLD.The MASLD population was analyzed in two cohorts:Overall population(279 patients)and the subgroup(117 patients)who underwent liver transient elastography(FibroScan).In the overall population,FIB-4 showed better diagnostic efficacy and higher PPV,with sensitivity,specificity,PPV,NPV,and AUROC of 26.9%,95.2%,73.5%,72.2%,and 0.75.APRI,Forns index,and aspartate transaminase to alanine transaminase ratio(ARR)showed moderate diagnostic efficacy,whereas S index and gamma-glutamyl transpeptidase to platelet ratio(GPR)were relatively weaker.In the subgroup,FAST had the highest diagnostic efficacy,its sensitivity,specificity,PPV,NPV,and AUROC were 44.2%,92.3%,82.1%,67.4%,and 0.82.The FIB-4 AUROC was 0.76.S index and GPR exhibited almost no diagnostic value for high-risk MASH.CONCLUSION FAST and FIB-4 could replace liver biopsy as more effectively diagnostic methods for high-risk MASH compared to APRI,Forns index,ARR,S index,and GPR;FAST is superior to FIB-4.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金Supported by Research Foundation of CLEP of China (Grant No.TY3Q20110003)。
文摘The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.
基金funded by the grants from the National Key Research and Development Program of China[2021YFC2301503,2022YFC2302900]the National Natural and Science Foundation of China[82171739,82171815,81873884]。
文摘Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Health Clinical Center.A total of 115patients underwent ultrasound-guided puncture biopsy,followed by MGIT 960 culture(culture),smear,Gene Xpert MTB/RIF(Xpert),and histopathological examination.These assays were performed to evaluate their effectiveness in diagnosing EPTB in comparison to two different diagnostic criteria:liquid culture and composite reference standard(CRS).Results When CRS was used as the reference standard,the sensitivity and specificity of culture,smear,Xpert,and histopathological examination were(44.83%,89.29%),(51.72%,89.29%),(70.11%,96.43%),and(85.06%,82.14%),respectively.Based on liquid culture tests,the sensitivity and specificity of smear,Xpert,and pathological examination were(66.67%,72.60%),(83.33%,63.01%),and(92.86%,45.21%),respectively.Histopathological examination showed the highest sensitivity but lowest specificity.Further,we found that the combination of Xpert and histopathological examination showed a sensitivity of 90.80%and a specificity of 89.29%.Conclusion Ultrasound-guided puncture sampling is safe and effective for the diagnosis of EPTB.Compared with culture,smear,and Xpert,histopathological examination showed higher sensitivity but lower specificity.The combination of histopathology with Xpert showed the best performance characteristics.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant Nos.11674128,11674124,and 11974138).
文摘We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51975347 and 51907117)in part by the Shanghai Science and Technology Program (Grant No.22010501600).
文摘Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.
基金supported by the National Key Research and Development Program (2022YFF0609504)the National Natural Science Foundation of China (61974126,51902273,62005230,62001405)the Natural Science Foundation of Fujian Province of China (No.2021J06009)
文摘Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications.
文摘The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is increasing,affecting over one-third of the global population and contributing to significant morbidity and mortality.Diagnosing MAFLD,especially with advan-ced fibrosis,remains challenging due to the limitations of liver biopsy,the current gold standard.Non-invasive tests are crucial for early detection and management.Among these,the fibrosis-4 index(Fib-4)is widely recommended as a first-line test for screening for liver fibrosis.Advanced imaging techniques,including ultrasound-based elastography and magnetic resonance elastography,offer high accuracy but are limited by cost and availability.Combining biomarkers,such as in the enhanced liver fibrosis score and FibroScan-AST score,enhances diagnostic precision and is recommended to further stratify patients who are considered to be intermediate or high risk from the Fib-4 score.We believe that the future lies in the combined use of biomarkers to improve diagnostic accuracy.
基金supported partially by NationalNatural Science Foundation of China(NSFC)(No.U21A20146)Collaborative Innovation Project of Anhui Universities(No.GXXT-2020-070)+8 种基金Cooperation Project of Anhui Future Technology Research Institute and Enterprise(No.2023qyhz32)Development of a New Dynamic Life Prediction Technology for Energy Storage Batteries(No.KH10003598)Opening Project of Key Laboratory of Electric Drive and Control of Anhui Province(No.DQKJ202304)Anhui Provincial Department of Education New Era Education Quality Project(No.2023dshwyx019)Special Fund for Collaborative Innovation between Anhui Polytechnic University and Jiujiang District(No.2022cyxtb10)Key Research and Development Program of Wuhu City(No.2022yf42)Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices(No.JCKJ2021B06)Anhui Provincial Graduate Student Innovation and Entrepreneurship Practice Project(No.2022cxcysj123)Key Scientific Research Project for Anhui Universities(No.2022AH050981).
文摘Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset.
基金supported by the National Natural Science Foundation of China(62371049)。
文摘In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.
基金provided by the National Natural Science Foundation of China(52074300)the Program of China Scholarship Council(202206430024)+2 种基金the National Natural Science Foundation of China Youth Science(52104139)Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)Guizhou province science and technology planning project([2020]3007,[2020]3008)。
文摘The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.
基金supported by the National Natural Science Foundation of China(Grant Nos.41877272 and 42077244)the National Key Research and Development Program of China e 2023 Key Special Project(Grant No.2023YFC2907400).
文摘Accurate prediction of rockburst proneness is one of challenges for assessing the rockburst risk and selecting effective control measures.This study aims to assess rockburst proneness by considering the energy characteristics and qualitative information during rock failure.Several representative rock types in cylindrical and cuboidal sample shapes were tested under uniaxial compression conditions and the failure progress was detected by a high-speed camera.The far-field ejection mass ratio(FEMR)was determined considering the qualitative failure information of the rock samples.The peak-strength energy impact index and the residual elastic energy index were used to quantitatively evaluate the rockburst proneness of both cylindrical and cuboidal samples.Further,the performance of these two indices was analyzed by comparing their estimates with the FEMR.The results show that the accuracy of the residual elastic energy index is significantly higher than that of the peak-strength energy impact index.The residual elastic energy index and the FEMR are in good agreement for both cylindrical and cuboidal rock materials.This is because these two indices can essentially reflect the common energy release mechanism characterized by the mass,ejection velocity,and ejection distance of rock fragments.It suggests that both the FEMR and the residual elastic energy index can be used to accurately measure the rockburst proneness of cylindrical and cuboidal samples based on uniaxial compression test.
基金the National Natural Science Foundation of China(Grant No.61973033)Preliminary Research of Equipment(Grant No.9090102010305)for funding the experiments。
文摘The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.
基金Supported by the Zimin Institute for Engineering Solutions Advancing Better Lives。
文摘Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs.
文摘Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.
文摘The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.
文摘The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal strain force of the left ventricle with the changes in the left ventricular pressure, allowing earlier detection of possible subclinical cardiac damage in patients, and a more accurate and non-invasive assessment of the patient’s myocardial work performance. In this article, we will discuss the progress of PSL applications in cardiovascular diseases.
文摘The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wolfowitz one-sample runs test for randomness, to present a novel approach for computing this probability, and to compare the four procedures by generating samples of 10 and 11 data points, varying the parameters n<sub>0</sub> (number of zeros) and n<sub>1</sub> (number of ones), as well as the number of runs. Fifty-nine samples are created to replicate the behavior of the distribution of the number of runs with 10 and 11 data points. The exact two-tailed probabilities for the four procedures were compared using Friedman’s test. Given the significant difference in central tendency, post-hoc comparisons were conducted using Conover’s test with Benjamini-Yekutielli correction. It is concluded that the procedures of Real Statistics using Excel and R exhibit some inadequacies in the calculation of the exact two-tailed probability, whereas the new proposal and the SPSS procedure are deemed more suitable. The proposed robust algorithm has a more transparent rationale than the SPSS one, albeit being somewhat more conservative. We recommend its implementation for this test and its application to others, such as the binomial and sign test.
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.