SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reacti...SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reaction method.And the growth mechanism of the SrTiO_3 nano-crystals under the liquid condition with/without adding the surface active agent was investigated.It was found that adding the surface active agent contributes to the processing in which the ions gathering bodies transit to a more stable phase through the chemical reaction and form the flake SrTiO_3 nano-crystals.展开更多
Alteration of technological and optical states of glass activated with chloride ions, entered to the surface of quartz sand and quartz grain by way of sodium chloride was investigated in the article. Concentration opt...Alteration of technological and optical states of glass activated with chloride ions, entered to the surface of quartz sand and quartz grain by way of sodium chloride was investigated in the article. Concentration optimum of activating agent was determined.展开更多
New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable...New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable energy source for heating and electricity generation due to its high combustion value.Currently,natural gas accounts for a large portion of electricity generation and chemical feedstock in manufacturing plastics and other commercially important organic chemicals.In the near future,natural gas will be widely used as a fuel for vehicles.Therefore,a practical storage device for its storage and transportation is very beneficial to the deployment of natural gas as an energy source for new technologies.In this tutorial review,biomaterials-based carbon monoliths(CMs),one kind of carbonaceous material,was reviewed as an adsorbent for natural gas(methane)adsorption and storage.展开更多
Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance...Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 】 AC-HNO3 】 AC-H2O2 】 AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.展开更多
Nanometer cerium-zirconium oxide solution Ce1-x ZrxO2 was synthesized by mechanically activated solid state re- action at middle-low temperatures, with Ce2(CO3)3, ZrOCl2-SH2O and H2C2O4·2H2O as raw materials. T...Nanometer cerium-zirconium oxide solution Ce1-x ZrxO2 was synthesized by mechanically activated solid state re- action at middle-low temperatures, with Ce2(CO3)3, ZrOCl2-SH2O and H2C2O4·2H2O as raw materials. The crystal structure and microstructure of the nanometer Ce1-x Zrx O2 were studied with X-ray diffractometry (XRD) and transmission electron microscope (TEM). The results show that the product is single-cubic-phase solid solution with an average crystal size 19.64 nm. In this article, the influence of surface active agent is also evaluated. Mechanically activated solid state reaction for the preparation of Ce1-xZrxO2 is a new technique of green chemistry without solvent and waste.展开更多
文摘SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reaction method.And the growth mechanism of the SrTiO_3 nano-crystals under the liquid condition with/without adding the surface active agent was investigated.It was found that adding the surface active agent contributes to the processing in which the ions gathering bodies transit to a more stable phase through the chemical reaction and form the flake SrTiO_3 nano-crystals.
文摘Alteration of technological and optical states of glass activated with chloride ions, entered to the surface of quartz sand and quartz grain by way of sodium chloride was investigated in the article. Concentration optimum of activating agent was determined.
基金Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.
文摘New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable energy source for heating and electricity generation due to its high combustion value.Currently,natural gas accounts for a large portion of electricity generation and chemical feedstock in manufacturing plastics and other commercially important organic chemicals.In the near future,natural gas will be widely used as a fuel for vehicles.Therefore,a practical storage device for its storage and transportation is very beneficial to the deployment of natural gas as an energy source for new technologies.In this tutorial review,biomaterials-based carbon monoliths(CMs),one kind of carbonaceous material,was reviewed as an adsorbent for natural gas(methane)adsorption and storage.
基金supported by the National Natural Science Foundation of China (Grant No. 50204011)the Chemical and Environmental Engineering Lab for the TP-5000(II) adsorption instrument
文摘Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 】 AC-HNO3 】 AC-H2O2 】 AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.
基金Project supported by the Key Project for Industry of Guangdong Province (Grant No,2004A10701005)the Natural Science Foundation of Guangdong Province (Grant No.04205301)
文摘Nanometer cerium-zirconium oxide solution Ce1-x ZrxO2 was synthesized by mechanically activated solid state re- action at middle-low temperatures, with Ce2(CO3)3, ZrOCl2-SH2O and H2C2O4·2H2O as raw materials. The crystal structure and microstructure of the nanometer Ce1-x Zrx O2 were studied with X-ray diffractometry (XRD) and transmission electron microscope (TEM). The results show that the product is single-cubic-phase solid solution with an average crystal size 19.64 nm. In this article, the influence of surface active agent is also evaluated. Mechanically activated solid state reaction for the preparation of Ce1-xZrxO2 is a new technique of green chemistry without solvent and waste.