Traffic on Indian roads is highly mixed in nature with wide variations in the static and dynamic characteristics of vehicles. These vehicles do not follow strict lane discipline and occupy any available lateral positi...Traffic on Indian roads is highly mixed in nature with wide variations in the static and dynamic characteristics of vehicles. These vehicles do not follow strict lane discipline and occupy any available lateral position on the road space. Overtaking is one of the most complex and important manoeuvre on undivided roads where the vehicles use the opposing lane to overtake the slower vehicles with the presence of oncoming vehicles from opposite direction. They are unavoidable especially in the case of mixed traffic conditions where there is always a speed difference between the fast and slow moving vehicles. Overtaking process involves lane-changing manoeuvres, acceleration and deceleration actions and estimation of relative speed of overtaking and overtaken vehicles, and also, estimation of speed and distance of the oncoming vehicle. The main objective of the present study is to study the overtaking characteristics of vehicles on undivided roads under mixed traffic conditions. For this purpose, details of overtaking data were collected on a two-lane two-way undivided road using moving car observer method and registration plate method. The overtaking characteristics of all types of vehicles under mixed traffic conditions were observed and mathematically modelled. The data extracted and analysed were the acceleration characteristics, speeds of the overtaking vehicles, overtaking time, overtaking distances, safe opposing gap required for overtaking, flow rates, overtaking frequencies, types of overtaking strategy, and types of overtaking and overtaken vehicles. Two types of overtaking strategies were observed in the field such as flying overtaking and accelerative overtaking. Graphs were plotted between the relative speed of the overtaking and overtaken vehicles against the overtaking time and negative correlation was found between the speed differential and total overtaking time for all categories of vehicles. It was observed that the number of overtaking increases with increase in the flow rate in the on-going direction and decreases with increase in flow in the opposite direction, The results obtained from this study will be useful to understand the overtaking behaviour of vehicles in mixed and non-lane discipline traffic conditions. These parameters will be useful in the development of traffic simulations models for undivided roads and thereby for estimation of capacity. The findings from the study can also be used to estimate potential collision times which will be helpful to improve the road safety.展开更多
On the heterogeneous and no lane disciplined traffic, the abreast maneuver of vehicles depends upon the driver behavior, vehicle type and most importantly the traffic parameters such as vehicle speed and acceleration....On the heterogeneous and no lane disciplined traffic, the abreast maneuver of vehicles depends upon the driver behavior, vehicle type and most importantly the traffic parameters such as vehicle speed and acceleration. Hence, the drivers have two basic tasks while driving, first is to control the vehicle's position along longitudinal direction of motion and second is to control the vehicle's position along lateral direction i.e. the width of the roadway. The relation between the dynamic parameters (speed and lateral/longitudinal acceleration), can very well represent the driving behavior of vehicles in mixed with weak or no lane disciplined traffic. Hence, the study of longitudinal and lateral control of vehicles in a comprehensive manner is necessary. In the present paper, driving behavior of vehicles are studied by analyzing longitudinal and lateral acceleration/deceleration (A/D) with operating speed of vehicles on different straight roadway sections. Data are collected from five major cities of India using GPS based instrument (Video-VBOX) mounted on five different type of vehicles. The probability distribution of longitudinal A/D and the lateral acceleration are analysed, and their relationship with operating speed of vehicles are studied on roads with a different number of lanes for different vehicle types. A two-term exponential and linear relationship with operating speed are observed for lateral and longitudinal A/D respectively.展开更多
为了解决车辆行驶中面对各种复杂环境车道线检测算法精度不高的问题,提出一种基于改进的UFS网络检测算法(Ultra Fast Structure-aware Deep Lane Detection,UFS).首先,采用改进的Gamma校正对待检路面图像进行校正,降低光照、阴影等的影...为了解决车辆行驶中面对各种复杂环境车道线检测算法精度不高的问题,提出一种基于改进的UFS网络检测算法(Ultra Fast Structure-aware Deep Lane Detection,UFS).首先,采用改进的Gamma校正对待检路面图像进行校正,降低光照、阴影等的影响,以提升夜间图像纹理特征。然后引入非局部神经网络模块(Non-Local Block),充分提取图像全局特征,以提高检测可靠性。最后对改进后的算法使用Tusimple、CULane数据集进行测试。结果表明:改进后的模型在物体遮挡、光照变化、阴影干扰等复杂场景下,提升了对复杂噪声与多元场景的处理能力,车道分割的准确率有所改善,具有较好的鲁棒性。展开更多
文摘Traffic on Indian roads is highly mixed in nature with wide variations in the static and dynamic characteristics of vehicles. These vehicles do not follow strict lane discipline and occupy any available lateral position on the road space. Overtaking is one of the most complex and important manoeuvre on undivided roads where the vehicles use the opposing lane to overtake the slower vehicles with the presence of oncoming vehicles from opposite direction. They are unavoidable especially in the case of mixed traffic conditions where there is always a speed difference between the fast and slow moving vehicles. Overtaking process involves lane-changing manoeuvres, acceleration and deceleration actions and estimation of relative speed of overtaking and overtaken vehicles, and also, estimation of speed and distance of the oncoming vehicle. The main objective of the present study is to study the overtaking characteristics of vehicles on undivided roads under mixed traffic conditions. For this purpose, details of overtaking data were collected on a two-lane two-way undivided road using moving car observer method and registration plate method. The overtaking characteristics of all types of vehicles under mixed traffic conditions were observed and mathematically modelled. The data extracted and analysed were the acceleration characteristics, speeds of the overtaking vehicles, overtaking time, overtaking distances, safe opposing gap required for overtaking, flow rates, overtaking frequencies, types of overtaking strategy, and types of overtaking and overtaken vehicles. Two types of overtaking strategies were observed in the field such as flying overtaking and accelerative overtaking. Graphs were plotted between the relative speed of the overtaking and overtaken vehicles against the overtaking time and negative correlation was found between the speed differential and total overtaking time for all categories of vehicles. It was observed that the number of overtaking increases with increase in the flow rate in the on-going direction and decreases with increase in flow in the opposite direction, The results obtained from this study will be useful to understand the overtaking behaviour of vehicles in mixed and non-lane discipline traffic conditions. These parameters will be useful in the development of traffic simulations models for undivided roads and thereby for estimation of capacity. The findings from the study can also be used to estimate potential collision times which will be helpful to improve the road safety.
文摘On the heterogeneous and no lane disciplined traffic, the abreast maneuver of vehicles depends upon the driver behavior, vehicle type and most importantly the traffic parameters such as vehicle speed and acceleration. Hence, the drivers have two basic tasks while driving, first is to control the vehicle's position along longitudinal direction of motion and second is to control the vehicle's position along lateral direction i.e. the width of the roadway. The relation between the dynamic parameters (speed and lateral/longitudinal acceleration), can very well represent the driving behavior of vehicles in mixed with weak or no lane disciplined traffic. Hence, the study of longitudinal and lateral control of vehicles in a comprehensive manner is necessary. In the present paper, driving behavior of vehicles are studied by analyzing longitudinal and lateral acceleration/deceleration (A/D) with operating speed of vehicles on different straight roadway sections. Data are collected from five major cities of India using GPS based instrument (Video-VBOX) mounted on five different type of vehicles. The probability distribution of longitudinal A/D and the lateral acceleration are analysed, and their relationship with operating speed of vehicles are studied on roads with a different number of lanes for different vehicle types. A two-term exponential and linear relationship with operating speed are observed for lateral and longitudinal A/D respectively.
文摘为了解决车辆行驶中面对各种复杂环境车道线检测算法精度不高的问题,提出一种基于改进的UFS网络检测算法(Ultra Fast Structure-aware Deep Lane Detection,UFS).首先,采用改进的Gamma校正对待检路面图像进行校正,降低光照、阴影等的影响,以提升夜间图像纹理特征。然后引入非局部神经网络模块(Non-Local Block),充分提取图像全局特征,以提高检测可靠性。最后对改进后的算法使用Tusimple、CULane数据集进行测试。结果表明:改进后的模型在物体遮挡、光照变化、阴影干扰等复杂场景下,提升了对复杂噪声与多元场景的处理能力,车道分割的准确率有所改善,具有较好的鲁棒性。