Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potent...Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potential approaches among the proposed solutions to resolve this issue are well explored cognitive radio(CR)technology and recently introduced non-orthogonal multiple access(NOMA)techniques.Both the techniques are employed for efficient spectrum utilization and assure the significant improvement in the spectral efficiency.Further,the significant improvement in spectral efficiency can be achieved by combining both the techniques.Since the CR is well-explored technique as compared to that of the NOMA in the field of communication,therefore it is worth and wise to implement this technique over the CR.In this article,we have presented the frameworks of NOMA implementation over CR as well as the feasibility of proposed frameworks.Further,the differences between proposed CR-NOMA and conventional CR frameworks are discussed.Finally,the potential issues regarding the implementation of CR-NOMA are explored.展开更多
In this paper we present the performance analysis of a novel channel assignment scheme where two non-cooperative independent users simultaneously communicate with their destination through a single relay by using only...In this paper we present the performance analysis of a novel channel assignment scheme where two non-cooperative independent users simultaneously communicate with their destination through a single relay by using only two frequency channels. The analytic derivation of the probability of symbol error for two main relay techniques will be provided, namely Amplify-and-Forward (AF) and Decode-and-Forward (DF). As shown by the obtained results, our switched-frequency approach results in a model that can achieve full- diversity by means of maximum-likelihood decoding at the receiver. Our results are especially important in the DF case, since in traditional techniques (such as half-duplex two-time slot approaches) two sources si-multaneously transmit on the same channel through the first time slot, which necessitates some sort of su-perposition coding. However, since in our scheme both users transmit over orthogonal channels, such a coding scheme is not required. In addition, it is shown that the DF approach based on our novel channel assign-ment scheme outperforms the AF scheme, especially in scenarios where the relay is closer to the receiver.展开更多
This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols w...This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout.The model,called Stacked Generalization for Channel Estimation(SGCE),aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput.The SGCE model incorporates six machine learning methods:random forest(RF),gradient boosting machine(GB),light gradient boosting machine(LGBM),support vector regression(SVR),extremely randomized tree(ERT),and extreme gradient boosting(XGB).By generating meta-data from five models(RF,GB,LGBM,SVR,and ERT),we ensure accurate channel coefficient predictions using the XGB model.To validate themodeling performance,we employ the leave-one-out cross-validation(LOOCV)approach,where each observation serves as the validation set while the remaining observations act as the training set.SGCE performances’results demonstrate higher mean andmedian accuracy compared to the separatedmodel.SGCE achieves an average accuracy of 98.4%,precision of 98.1%,and the highest F1-score of 98.5%,accurately predicting channel coefficients.Furthermore,our proposedmethod outperforms prior traditional and intelligent techniques in terms of throughput and bit error rate.SGCE’s superior performance highlights its efficacy in optimizing channel estimation.It can effectively predict channel coefficients and contribute to enhancing the overall efficiency of radio mobile systems.Through extensive experimentation and evaluation,we demonstrate that SGCE improved performance in channel estimation,surpassing previous techniques.Accordingly,SGCE’s capabilities have significant implications for optimizing channel estimation in modern communication systems.展开更多
A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy ...A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.展开更多
Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accompl...Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.展开更多
In a real communication scenario,it is very difficult to obtain the real-time channel state infor-mation(CSI)accurately,so the non-orthogonal multiple access(NOMA)system with statistical CSI has been researched.Aiming...In a real communication scenario,it is very difficult to obtain the real-time channel state infor-mation(CSI)accurately,so the non-orthogonal multiple access(NOMA)system with statistical CSI has been researched.Aiming at the problem that the maximization of system sum rate cannot be solved directly,a step-by-step resource allocation optimization scheme based on machine learning is proposed.First,in order to achieve a trade-off between the system sum rate and user fairness,the system throughput formula is derived.Then,according to the combinatorial characteristics of the system throughput maximization problem,the original optimization problem is divided into two sub-problems,that are power allocation and user grouping.Finally,genetic algorithm is introduced to solve the sub-problem of power allocation,and hungarian algorithm is introduced to solve the sub-problem of user grouping.By comparing the ergodic data rate of NOMA users with statistical CSI and perfect CSI,the effectiveness of the statistical CSI sorting is verified.Compared with the orthogonal multiple access(OMA)scheme,the NOMA scheme with the fixed user grouping scheme and the random user grouping scheme,the system throughput performance of the proposed scheme is signifi-cantly improved.展开更多
In order to improve link performance of future wireless relay networks,a network coding scheme with linear block codes was proposed,which could be deployed in a relay network consisting of multi-source sending data to...In order to improve link performance of future wireless relay networks,a network coding scheme with linear block codes was proposed,which could be deployed in a relay network consisting of multi-source sending data to a common base station(BS) with the assistance of one relay node.At BS,an iterative decoding structure between one cooperative decoder and a number of single-source decoders was established using the relayed network codes and source codes.Further,the extrinsic information transfer(EXIT) chart technique was used to predict and analyze the convergence behavior of iterative decoder.The analysis and simulation results show that the bit error ratio(BER) performance of the proposed scheme outperforms reference scheme under different relay network coding matrices.Compared with a reference scheme without the multisource cooperation,the proposed scheme can obtain network coding gain from the relay network while not reduce its code rate.展开更多
在不完全信道状态信息和非理想连续干扰消除条件下对存在窃听者的非正交多址系统安全性能问题进行研究,提出一个存在窃听者的解码转发中继辅助非正交多址接入系统(Decode and Forward Cooperative Relay in Non-Orthogonal Multiple Acc...在不完全信道状态信息和非理想连续干扰消除条件下对存在窃听者的非正交多址系统安全性能问题进行研究,提出一个存在窃听者的解码转发中继辅助非正交多址接入系统(Decode and Forward Cooperative Relay in Non-Orthogonal Multiple Access System with Eavesdropper,DFCR-E-NOMA)。在该系统中,分析了在不完全的信道状态信息和非理想连续干扰消除同时存在的条件下系统的安全性能,利用中断概率和截获概率表征系统的安全性能,通过蒙特卡罗模拟仿真分析了功率分配系数、信道估计误差对所提系统性能的影响。验证结果表明,在信道条件一定的情况下,可通过设置较高的数据传输速率,在基站或中继处选择合适的功率分配系数能够有效降低窃听者的截获概率。展开更多
针对基于无线携能通信(SWIPT, simultaneous wireless information and power transfer)和非正交多址接入(NOMA, non-orthogonal multiple access)的认知中继(CR, cognitive relay)(SWIPT-NOMA-CR)网络,考虑非理想顺序干扰消除(SIC, suc...针对基于无线携能通信(SWIPT, simultaneous wireless information and power transfer)和非正交多址接入(NOMA, non-orthogonal multiple access)的认知中继(CR, cognitive relay)(SWIPT-NOMA-CR)网络,考虑非理想顺序干扰消除(SIC, successive interference cancellation)和信道状态信息(CSI, channel state information)实际情况,研究系统在采用理想、时间开关(TS, time switching)和功率分割(PS, power splitting)3种中继传输方案时次用户的中断性能。推导出次用户中断概率的解析表达式,并通过蒙特卡洛仿真验证理论推导的正确性。实验结果表明,非理想SIC和CSI会导致次用户的中断性能下降,相对于非理想CSI,非理想SIC给系统中断性能带来的损失更大。此外,用户采用PS中继传输方案的中断概率比采用TS方案低,当改变非理想SIC和CSI因子时,采用PS方案用户的中断概率差值比TS方案小,说明PS中继传输方案的可靠性优于TS方案。展开更多
针对两个用户、一个中继节点、一个基站的多址接入中继系统提出了一种基于低密度奇偶校验(lowdensity parity check,LDPC)乘积编码的网络编码方案。为了进一步提升系统性能,方案中采用了一种基于外信息转移(extrinsic information trans...针对两个用户、一个中继节点、一个基站的多址接入中继系统提出了一种基于低密度奇偶校验(lowdensity parity check,LDPC)乘积编码的网络编码方案。为了进一步提升系统性能,方案中采用了一种基于外信息转移(extrinsic information transfer,EXIT)图的LDPC乘积码度分布优化算法。该算法主要是对中继节点的LDPC乘积编码进行优化设计,同时可预测LDPC乘积码的迭代译码性能。性能分析与仿真结果表明:优化的网络编码方案进一步改善了传输网络的误码率性能,利用EXIT曲线图实现了迭代译码性能的近似估计。展开更多
The lack of communication infrastructure in the ocean inevitably leads to coverage blind zones.In addition to high-throughput marine satellites,unmanned aerial vehicles(UAVs)can be used to provide coverage for these b...The lack of communication infrastructure in the ocean inevitably leads to coverage blind zones.In addition to high-throughput marine satellites,unmanned aerial vehicles(UAVs)can be used to provide coverage for these blind zones along with onshore base stations.In this paper,we consider the use of UAV for maritime coverage enhancement.Particularly,to serve more ships on the vast oceanic area with limited spectrum resources,we employ non-orthogonal multiple access(NOMA).A joint power and transmission duration allocation problem is formulated to maximize the minimum ship throughput,with the constraints on onboard communication energy.Different from previous works,we only assume the slowly time-varying large-scale channel state information(CSI)to reduce the system cost,as the large-scale CSI is locationdependent and can be obtained according to a priori radio map.To solve the non-convex problem,we decompose it into two subproblems and solve them in an iterative way.Simulation results show the effectiveness of the proposed solution.展开更多
This paper proposes some low complexity algorithms for active user detection(AUD),channel estimation(CE)and multi-user detection(MUD)in uplink non-orthogonal multiple access(NOMA)systems,including single-carrier and m...This paper proposes some low complexity algorithms for active user detection(AUD),channel estimation(CE)and multi-user detection(MUD)in uplink non-orthogonal multiple access(NOMA)systems,including single-carrier and multi-carrier cases.In particular,we first propose a novel algorithm to estimate the active users and the channels for single-carrier based on complex alternating direction method of multipliers(ADMM),where fast decaying feature of non-zero components in sparse signal is considered.More importantly,the reliable estimated information is used for AUD,and the unreliable information will be further handled based on estimated symbol energy and total accurate or approximate number of active users.Then,the proposed algorithm for AUD in single-carrier model can be extended to multi-carrier case by exploiting the block sparse structure.Besides,we propose a low complexity MUD detection algorithm based on alternating minimization to estimate the active users’data,which avoids the Hessian matrix inverse.The convergence and the complexity of proposed algorithms are analyzed and discussed finally.Simulation results show that the proposed algorithms have better performance in terms of AUD,CE and MUD.Moreover,we can detect active users perfectly for multi-carrier NOMA system.展开更多
The joint power allocation(PA)and beamforming(BF)design problem is studied to maximize the energy efficiency of a two-user downlink millimeter-wave system with non-orthogonal multiple access under imperfect channel st...The joint power allocation(PA)and beamforming(BF)design problem is studied to maximize the energy efficiency of a two-user downlink millimeter-wave system with non-orthogonal multiple access under imperfect channel state information(CSI).By means of block coordinate descent,convex-concave procedure,and successive convex approximate,we propose a suboptimal joint PA and BF design scheme to address this non-convex problem.Simulation results verify that the proposed joint PA and BF design scheme is more effective when compared to some existing schemes.展开更多
文摘Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potential approaches among the proposed solutions to resolve this issue are well explored cognitive radio(CR)technology and recently introduced non-orthogonal multiple access(NOMA)techniques.Both the techniques are employed for efficient spectrum utilization and assure the significant improvement in the spectral efficiency.Further,the significant improvement in spectral efficiency can be achieved by combining both the techniques.Since the CR is well-explored technique as compared to that of the NOMA in the field of communication,therefore it is worth and wise to implement this technique over the CR.In this article,we have presented the frameworks of NOMA implementation over CR as well as the feasibility of proposed frameworks.Further,the differences between proposed CR-NOMA and conventional CR frameworks are discussed.Finally,the potential issues regarding the implementation of CR-NOMA are explored.
文摘In this paper we present the performance analysis of a novel channel assignment scheme where two non-cooperative independent users simultaneously communicate with their destination through a single relay by using only two frequency channels. The analytic derivation of the probability of symbol error for two main relay techniques will be provided, namely Amplify-and-Forward (AF) and Decode-and-Forward (DF). As shown by the obtained results, our switched-frequency approach results in a model that can achieve full- diversity by means of maximum-likelihood decoding at the receiver. Our results are especially important in the DF case, since in traditional techniques (such as half-duplex two-time slot approaches) two sources si-multaneously transmit on the same channel through the first time slot, which necessitates some sort of su-perposition coding. However, since in our scheme both users transmit over orthogonal channels, such a coding scheme is not required. In addition, it is shown that the DF approach based on our novel channel assign-ment scheme outperforms the AF scheme, especially in scenarios where the relay is closer to the receiver.
基金This research project was funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,grant No(43-PRFA-P-58).
文摘This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout.The model,called Stacked Generalization for Channel Estimation(SGCE),aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput.The SGCE model incorporates six machine learning methods:random forest(RF),gradient boosting machine(GB),light gradient boosting machine(LGBM),support vector regression(SVR),extremely randomized tree(ERT),and extreme gradient boosting(XGB).By generating meta-data from five models(RF,GB,LGBM,SVR,and ERT),we ensure accurate channel coefficient predictions using the XGB model.To validate themodeling performance,we employ the leave-one-out cross-validation(LOOCV)approach,where each observation serves as the validation set while the remaining observations act as the training set.SGCE performances’results demonstrate higher mean andmedian accuracy compared to the separatedmodel.SGCE achieves an average accuracy of 98.4%,precision of 98.1%,and the highest F1-score of 98.5%,accurately predicting channel coefficients.Furthermore,our proposedmethod outperforms prior traditional and intelligent techniques in terms of throughput and bit error rate.SGCE’s superior performance highlights its efficacy in optimizing channel estimation.It can effectively predict channel coefficients and contribute to enhancing the overall efficiency of radio mobile systems.Through extensive experimentation and evaluation,we demonstrate that SGCE improved performance in channel estimation,surpassing previous techniques.Accordingly,SGCE’s capabilities have significant implications for optimizing channel estimation in modern communication systems.
文摘A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.
基金supported in part by the National Natural Science Foundation of China under Grants 61971149,61431005,and 61971198in part by the Natural Science Foundation of Guangdong Province under Grant 2016A030308006+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011040in part by the Young Innovative Talents Project of Guangdong Province under Grant 2018GkQNCX118.
文摘Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.
基金Supported by the National Natural Science Foundation of China(No.62001001).
文摘In a real communication scenario,it is very difficult to obtain the real-time channel state infor-mation(CSI)accurately,so the non-orthogonal multiple access(NOMA)system with statistical CSI has been researched.Aiming at the problem that the maximization of system sum rate cannot be solved directly,a step-by-step resource allocation optimization scheme based on machine learning is proposed.First,in order to achieve a trade-off between the system sum rate and user fairness,the system throughput formula is derived.Then,according to the combinatorial characteristics of the system throughput maximization problem,the original optimization problem is divided into two sub-problems,that are power allocation and user grouping.Finally,genetic algorithm is introduced to solve the sub-problem of power allocation,and hungarian algorithm is introduced to solve the sub-problem of user grouping.By comparing the ergodic data rate of NOMA users with statistical CSI and perfect CSI,the effectiveness of the statistical CSI sorting is verified.Compared with the orthogonal multiple access(OMA)scheme,the NOMA scheme with the fixed user grouping scheme and the random user grouping scheme,the system throughput performance of the proposed scheme is signifi-cantly improved.
基金National Natural Science Foundation of China(No.51204176)
文摘In order to improve link performance of future wireless relay networks,a network coding scheme with linear block codes was proposed,which could be deployed in a relay network consisting of multi-source sending data to a common base station(BS) with the assistance of one relay node.At BS,an iterative decoding structure between one cooperative decoder and a number of single-source decoders was established using the relayed network codes and source codes.Further,the extrinsic information transfer(EXIT) chart technique was used to predict and analyze the convergence behavior of iterative decoder.The analysis and simulation results show that the bit error ratio(BER) performance of the proposed scheme outperforms reference scheme under different relay network coding matrices.Compared with a reference scheme without the multisource cooperation,the proposed scheme can obtain network coding gain from the relay network while not reduce its code rate.
文摘在不完全信道状态信息和非理想连续干扰消除条件下对存在窃听者的非正交多址系统安全性能问题进行研究,提出一个存在窃听者的解码转发中继辅助非正交多址接入系统(Decode and Forward Cooperative Relay in Non-Orthogonal Multiple Access System with Eavesdropper,DFCR-E-NOMA)。在该系统中,分析了在不完全的信道状态信息和非理想连续干扰消除同时存在的条件下系统的安全性能,利用中断概率和截获概率表征系统的安全性能,通过蒙特卡罗模拟仿真分析了功率分配系数、信道估计误差对所提系统性能的影响。验证结果表明,在信道条件一定的情况下,可通过设置较高的数据传输速率,在基站或中继处选择合适的功率分配系数能够有效降低窃听者的截获概率。
文摘针对基于无线携能通信(SWIPT, simultaneous wireless information and power transfer)和非正交多址接入(NOMA, non-orthogonal multiple access)的认知中继(CR, cognitive relay)(SWIPT-NOMA-CR)网络,考虑非理想顺序干扰消除(SIC, successive interference cancellation)和信道状态信息(CSI, channel state information)实际情况,研究系统在采用理想、时间开关(TS, time switching)和功率分割(PS, power splitting)3种中继传输方案时次用户的中断性能。推导出次用户中断概率的解析表达式,并通过蒙特卡洛仿真验证理论推导的正确性。实验结果表明,非理想SIC和CSI会导致次用户的中断性能下降,相对于非理想CSI,非理想SIC给系统中断性能带来的损失更大。此外,用户采用PS中继传输方案的中断概率比采用TS方案低,当改变非理想SIC和CSI因子时,采用PS方案用户的中断概率差值比TS方案小,说明PS中继传输方案的可靠性优于TS方案。
文摘针对两个用户、一个中继节点、一个基站的多址接入中继系统提出了一种基于低密度奇偶校验(lowdensity parity check,LDPC)乘积编码的网络编码方案。为了进一步提升系统性能,方案中采用了一种基于外信息转移(extrinsic information transfer,EXIT)图的LDPC乘积码度分布优化算法。该算法主要是对中继节点的LDPC乘积编码进行优化设计,同时可预测LDPC乘积码的迭代译码性能。性能分析与仿真结果表明:优化的网络编码方案进一步改善了传输网络的误码率性能,利用EXIT曲线图实现了迭代译码性能的近似估计。
基金supported in part by National Natural Science Foundation of China(No.61922049,61771286,61941104)the National Key R&D Program of China(2020YFA0711301)+2 种基金the Beijing National Research Center for Information Science and Technology project(BNR2020RC01016)the Nantong Technology Program(JC2019115)the Beijing Innovation Center for Future Chip。
文摘The lack of communication infrastructure in the ocean inevitably leads to coverage blind zones.In addition to high-throughput marine satellites,unmanned aerial vehicles(UAVs)can be used to provide coverage for these blind zones along with onshore base stations.In this paper,we consider the use of UAV for maritime coverage enhancement.Particularly,to serve more ships on the vast oceanic area with limited spectrum resources,we employ non-orthogonal multiple access(NOMA).A joint power and transmission duration allocation problem is formulated to maximize the minimum ship throughput,with the constraints on onboard communication energy.Different from previous works,we only assume the slowly time-varying large-scale channel state information(CSI)to reduce the system cost,as the large-scale CSI is locationdependent and can be obtained according to a priori radio map.To solve the non-convex problem,we decompose it into two subproblems and solve them in an iterative way.Simulation results show the effectiveness of the proposed solution.
基金supported by National Natural Science Foundation of China(NSFC)under Grant No.62001190The work of J.Wen was supported by NSFC(Nos.11871248,61932010,61932011)+3 种基金the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019),Guangdong Major Project of Basic and Applied Basic Research(2019B030302008)the Fundamental Research Funds for the Central Universities(No.21618329)The work of P.Fan was supported by National Key R&D Project(No.2018YFB1801104)NSFC Project(No.6202010600).
文摘This paper proposes some low complexity algorithms for active user detection(AUD),channel estimation(CE)and multi-user detection(MUD)in uplink non-orthogonal multiple access(NOMA)systems,including single-carrier and multi-carrier cases.In particular,we first propose a novel algorithm to estimate the active users and the channels for single-carrier based on complex alternating direction method of multipliers(ADMM),where fast decaying feature of non-zero components in sparse signal is considered.More importantly,the reliable estimated information is used for AUD,and the unreliable information will be further handled based on estimated symbol energy and total accurate or approximate number of active users.Then,the proposed algorithm for AUD in single-carrier model can be extended to multi-carrier case by exploiting the block sparse structure.Besides,we propose a low complexity MUD detection algorithm based on alternating minimization to estimate the active users’data,which avoids the Hessian matrix inverse.The convergence and the complexity of proposed algorithms are analyzed and discussed finally.Simulation results show that the proposed algorithms have better performance in terms of AUD,CE and MUD.Moreover,we can detect active users perfectly for multi-carrier NOMA system.
基金supported in part by the Fundamental Research Funds of Nanjing University of Aeronautics and Astronautics(No.kfjj20200414)the Natural Science Foundation of Jiangsu Province in China (No. BK20181289)the Open Research Fund of State Key Laboratory of Millimeter Waves of Southeast University (No.K202215)
文摘The joint power allocation(PA)and beamforming(BF)design problem is studied to maximize the energy efficiency of a two-user downlink millimeter-wave system with non-orthogonal multiple access under imperfect channel state information(CSI).By means of block coordinate descent,convex-concave procedure,and successive convex approximate,we propose a suboptimal joint PA and BF design scheme to address this non-convex problem.Simulation results verify that the proposed joint PA and BF design scheme is more effective when compared to some existing schemes.