AIM: To investigated the effects of urotensin Ⅱ(UII) on hepatic insulin resistance in Hep G2 cells and the potential mechanisms involved.METHODS: Human hepatoma Hep G2 cells were cultured with or without exogenous UI...AIM: To investigated the effects of urotensin Ⅱ(UII) on hepatic insulin resistance in Hep G2 cells and the potential mechanisms involved.METHODS: Human hepatoma Hep G2 cells were cultured with or without exogenous UII for 24 h, in the presence or absence of 100 nmol/L insulin for the last 30 min. Glucose levels were detected by the glucoseoxidase method and glycogen synthesis was analyzed by glycogen colorimetric/fluorometric assay. Reactive oxygen species(ROS) levels were detected with a multimode reader using a 2′,7′-dichlorofluorescein diacetate probe. The protein expression and phosphorylation levels of c-Jun N-terminal kinase(JNK), insulin signal essential molecules such as insulin receptor substrate-1(IRS-1), protein kinase B(Akt), glycogen synthase kinase-3β(GSK-3β), and glucose transporter-2(Glut 2), and NADPH oxidase subunits such as gp91 phox, p67 phox, p47 phox, p40 phox, and p22 phox were evaluated by Western blot.RESULTS: Exposure to 100 nmol/L UII reduced the insulin-induced glucose consumption(P < 0.05)and glycogen content(P < 0.01) in Hep G2 cells compared with cells without UII. UII also abolished insulin-stimulated protein expression(P < 0.01) and phosphorylation of IRS-1(P < 0.05), associated with down-regulation of Akt(P < 0.05) and GSK-3β(P < 0.05) phosphorylation levels, and the expression of Glut 2(P < 0.001), indicating an insulin-resistance state in Hep G2 cells. Furthermore, UII enhanced the phosphorylation of JNK(P < 0.05), while the activity of JNK, insulin signaling, such as total protein of IRS-1(P < 0.001), phosphorylation of IRS-1(P < 0.001) and GSK-3β(P < 0.05), and glycogen synthesis(P < 0.001) could be reversed by pretreatment with the JNK inhibitor SP600125. Besides, UII markedly improved ROS generation(P < 0.05) and NADPH oxidase subunit expression(P < 0.05). However, the antioxidant/NADPH oxidase inhibitor apocynin could decrease UII-induced ROS production(P < 0.05), JNK phosphorylation(P < 0.05), and insulin resistance(P < 0.05) in HepG 2 cells. CONCLUSION: UII induces insulin resistance, and this can be reversed by JNK inhibitor SP600125 and antioxidant/NADPH oxidase inhibitor apocynin targeting the insulin signaling pathway in HepG 2 cells.展开更多
A rapid and concentration-dependent generation of superoxide anion (·O2^-), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaC...A rapid and concentration-dependent generation of superoxide anion (·O2^-), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaCl3 and CdCl3 ) were added to tobacco ( Nicotiana tabacum) cell suspension culture. Addition of superoxide dismutase (480 U·ml^-1) and Tiron (5 μmol·L^-1) to cell culture suspension decreases the level of lanthanide cation-induced ·O2^- generation, suggesting that ·O2^- generation is extra-cellular. Pretreatment of the cell culture suspension with diphenyleneiodonium (10 and 50 μmol·L^-1 ), quinacrine ( 1 and 5 mmol· L^-1 ) and imidazol ( 10 mmol· L^-1 ), inhibitors of NADPH oxidase, notably inhibits the generation of superoxide induced by lanthanide cation, implying the possible involvement of activation of NADPH oxidase. In addition, addition of SHAM (1 and 5 mmol· L^-1), azide (0.2 and 1 mmol· L^-1 ), inhibitor of peroxidase, has no influence on ·O2^- generation.展开更多
Objective To construct Cox7a2 fluorescent vector and study its effect on cytochrome C oxidase ( COX) activity in mouse Sertoli cell line TM4. Methods The coding region of CoxTa2 was amplified from mouse Sertoli cell l...Objective To construct Cox7a2 fluorescent vector and study its effect on cytochrome C oxidase ( COX) activity in mouse Sertoli cell line TM4. Methods The coding region of CoxTa2 was amplified from mouse Sertoli cell line TM4 by RT-PCR. PCR product was展开更多
AIM:To investigate the effect of leucine-rich-alpha-2-glycoprotein 1(LRG1)on epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE)cells,and to explore the role of NADPH oxidase 4(NOX4).METHODS:RPE c...AIM:To investigate the effect of leucine-rich-alpha-2-glycoprotein 1(LRG1)on epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE)cells,and to explore the role of NADPH oxidase 4(NOX4).METHODS:RPE cells(ARPE-19 cell line)were treated with transforming growth factor-β1(TGF-β1)to induce EMT.Changes of the m RNA and protein expression levels of LRG1 were tested in the TGF-β1 treated cells.The recombinant human LRG1 protein(r LRG1)and si RNA of LRG1 were used to establish accumulation of exogenous LRG1 model and the down-regulation of LRG1 model in ARPE-19 cells respectively,and to detect EMT-related markers including fibronectin,α-smooth muscle actin(α-SMA)and zonula occludens-1(ZO-1).The m RNA and protein expression level of NOX4 were measured according to the above treatments.VAS2870 was used as a NOX4 inhibitor in r LRG1-treated cells.EMT-related markers were detected to verify the effect of NOX4 in the process of EMT.RESULTS:TGF-β1 promoted the expression of LRG1 at both the m RNA and protein levels during the process of EMT which showed the up-regulation of fibronectin andα-SMA,as well as the down-regulation of ZO-1.Furthermore,the r LRG1 promoted EMT of ARPE-19 cells,which manifested high levels of fibronectin andα-SMA and low level of ZO-1,whereas knockdown of LRG1 prevented EMT by decreasing the expressions of fibronectin andα-SMA and increasing the expression of ZO-1 in ARPE-19 cells.Besides,the r LRG1 activated and LRG1 si RNA suppressed NOX4 expression.EMT was inhibited when VAS2870 was used in the r LRG1-treated cells.CONCLUSION:These results for the first time demonstrate that LRG1 promotes EMT of RPE cells by activating NOX4,which may provide a novel direction to explore the mechanisms of subretinal fibrosis.展开更多
基金Supported by National Natural Science Foundation of China,No.81272757the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality,No.IDHT20150502
文摘AIM: To investigated the effects of urotensin Ⅱ(UII) on hepatic insulin resistance in Hep G2 cells and the potential mechanisms involved.METHODS: Human hepatoma Hep G2 cells were cultured with or without exogenous UII for 24 h, in the presence or absence of 100 nmol/L insulin for the last 30 min. Glucose levels were detected by the glucoseoxidase method and glycogen synthesis was analyzed by glycogen colorimetric/fluorometric assay. Reactive oxygen species(ROS) levels were detected with a multimode reader using a 2′,7′-dichlorofluorescein diacetate probe. The protein expression and phosphorylation levels of c-Jun N-terminal kinase(JNK), insulin signal essential molecules such as insulin receptor substrate-1(IRS-1), protein kinase B(Akt), glycogen synthase kinase-3β(GSK-3β), and glucose transporter-2(Glut 2), and NADPH oxidase subunits such as gp91 phox, p67 phox, p47 phox, p40 phox, and p22 phox were evaluated by Western blot.RESULTS: Exposure to 100 nmol/L UII reduced the insulin-induced glucose consumption(P < 0.05)and glycogen content(P < 0.01) in Hep G2 cells compared with cells without UII. UII also abolished insulin-stimulated protein expression(P < 0.01) and phosphorylation of IRS-1(P < 0.05), associated with down-regulation of Akt(P < 0.05) and GSK-3β(P < 0.05) phosphorylation levels, and the expression of Glut 2(P < 0.001), indicating an insulin-resistance state in Hep G2 cells. Furthermore, UII enhanced the phosphorylation of JNK(P < 0.05), while the activity of JNK, insulin signaling, such as total protein of IRS-1(P < 0.001), phosphorylation of IRS-1(P < 0.001) and GSK-3β(P < 0.05), and glycogen synthesis(P < 0.001) could be reversed by pretreatment with the JNK inhibitor SP600125. Besides, UII markedly improved ROS generation(P < 0.05) and NADPH oxidase subunit expression(P < 0.05). However, the antioxidant/NADPH oxidase inhibitor apocynin could decrease UII-induced ROS production(P < 0.05), JNK phosphorylation(P < 0.05), and insulin resistance(P < 0.05) in HepG 2 cells. CONCLUSION: UII induces insulin resistance, and this can be reversed by JNK inhibitor SP600125 and antioxidant/NADPH oxidase inhibitor apocynin targeting the insulin signaling pathway in HepG 2 cells.
文摘A rapid and concentration-dependent generation of superoxide anion (·O2^-), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaCl3 and CdCl3 ) were added to tobacco ( Nicotiana tabacum) cell suspension culture. Addition of superoxide dismutase (480 U·ml^-1) and Tiron (5 μmol·L^-1) to cell culture suspension decreases the level of lanthanide cation-induced ·O2^- generation, suggesting that ·O2^- generation is extra-cellular. Pretreatment of the cell culture suspension with diphenyleneiodonium (10 and 50 μmol·L^-1 ), quinacrine ( 1 and 5 mmol· L^-1 ) and imidazol ( 10 mmol· L^-1 ), inhibitors of NADPH oxidase, notably inhibits the generation of superoxide induced by lanthanide cation, implying the possible involvement of activation of NADPH oxidase. In addition, addition of SHAM (1 and 5 mmol· L^-1), azide (0.2 and 1 mmol· L^-1 ), inhibitor of peroxidase, has no influence on ·O2^- generation.
文摘Objective To construct Cox7a2 fluorescent vector and study its effect on cytochrome C oxidase ( COX) activity in mouse Sertoli cell line TM4. Methods The coding region of CoxTa2 was amplified from mouse Sertoli cell line TM4 by RT-PCR. PCR product was
基金Supported by the National Natural Science Foundation of China(No.81670828)the Shandong Provincial Key Research and Development Program(No.2017GSF18141)+1 种基金the Innovation Project of Shandong Academy of Medical Sciences and the National Science and Technology Major Project of China(No.2017ZX09304-010)partially supported by the Taishan Scholar Youth Professional Program(No.tspd20150215,No.tsgn20161059)。
文摘AIM:To investigate the effect of leucine-rich-alpha-2-glycoprotein 1(LRG1)on epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE)cells,and to explore the role of NADPH oxidase 4(NOX4).METHODS:RPE cells(ARPE-19 cell line)were treated with transforming growth factor-β1(TGF-β1)to induce EMT.Changes of the m RNA and protein expression levels of LRG1 were tested in the TGF-β1 treated cells.The recombinant human LRG1 protein(r LRG1)and si RNA of LRG1 were used to establish accumulation of exogenous LRG1 model and the down-regulation of LRG1 model in ARPE-19 cells respectively,and to detect EMT-related markers including fibronectin,α-smooth muscle actin(α-SMA)and zonula occludens-1(ZO-1).The m RNA and protein expression level of NOX4 were measured according to the above treatments.VAS2870 was used as a NOX4 inhibitor in r LRG1-treated cells.EMT-related markers were detected to verify the effect of NOX4 in the process of EMT.RESULTS:TGF-β1 promoted the expression of LRG1 at both the m RNA and protein levels during the process of EMT which showed the up-regulation of fibronectin andα-SMA,as well as the down-regulation of ZO-1.Furthermore,the r LRG1 promoted EMT of ARPE-19 cells,which manifested high levels of fibronectin andα-SMA and low level of ZO-1,whereas knockdown of LRG1 prevented EMT by decreasing the expressions of fibronectin andα-SMA and increasing the expression of ZO-1 in ARPE-19 cells.Besides,the r LRG1 activated and LRG1 si RNA suppressed NOX4 expression.EMT was inhibited when VAS2870 was used in the r LRG1-treated cells.CONCLUSION:These results for the first time demonstrate that LRG1 promotes EMT of RPE cells by activating NOX4,which may provide a novel direction to explore the mechanisms of subretinal fibrosis.