The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of...The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.展开更多
Hanging roofs or high hang-ups.a common problem in sublevel caving mining,usually result in a large ore loss and undermine mining safety.This paper analyzed the formation of a hanging roof and showed that increased co...Hanging roofs or high hang-ups.a common problem in sublevel caving mining,usually result in a large ore loss and undermine mining safety.This paper analyzed the formation of a hanging roof and showed that increased confining pressure and reduced free surface were its main characteristics.In order to break down a hanging roof,a new method based on shock wave collision and stress superposition was developed.In this method,two blastholes containing multi-primer at different positions are simultaneously initiated at first.By doing this,a new free surface and a swell room can be created.After these holes are fired,a long delay time is given to the next blasthole so that the fragments from the first twohole blasting have enough time to fall down.This new method was applied to three hanging roofs in one production area,and all of them were successfully broken down.Field inspection indicated that almost no damage was caused in the nearby drifts/tunnels due to the new method.In addition,the far field vibrations were found to be smaller than the maximum vibrations induced by some other blasts.展开更多
The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/...The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were l:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models.展开更多
Under the action of abutment pressure in front of fully mechanized coal face with sublevel caving(CFSC),top-coal over CFSC deformed.In the process of whole de- formation of top-coal,it changed from continuum elastic m...Under the action of abutment pressure in front of fully mechanized coal face with sublevel caving(CFSC),top-coal over CFSC deformed.In the process of whole de- formation of top-coal,it changed from continuum elastic mass to non-continuum plastic mass contained fissures,become a loose body.According to its bearing characteristics and mechanical properties,top-coal mass can be divided into four deformation zones along the winning direction of CFSC,i.e.initial stress zone,elastic zone,plastic zone and loose zone.Top-coal in plastic zone located in the post-peak zone of the stress-strain curve for top-coal.With equivalent strain principle of damage mechanics and mathemati- cal theory of statistic,combining the movement law of top-coal,set up a constitutive equa- tion with damage statistics for top-coal in different position in CFSC.The equation illus- trated the mathematical relationship among top-coal bearing capacity,horizontal confining pressure along the winning direction of CFSC and mechanical properties of top-coal mate- rial.The conclusions not only provide a basis for numerical computer simulations on damage deformation and failure mechanism for top-coal,but also further promote the ap- plication of damage mechanics in CFSC.展开更多
In order to realize the modernized miningmanagementi the authors. based on the practice of a specified mine, developed the application software of the broken ore drawing data management system for sublevel caving thro...In order to realize the modernized miningmanagementi the authors. based on the practice of a specified mine, developed the application software of the broken ore drawing data management system for sublevel caving through the study on FOXBASE computer language. This paper elabo-rates the overall conception of this system , indicates the main task which should he completed in this system and introduces its module structure and main functions.展开更多
According to the analysis of the mechanism of top coal caving, the caving condition was pointed out, and many factors of caving were also determined. Then the relationship between factors and caving was studied. Based...According to the analysis of the mechanism of top coal caving, the caving condition was pointed out, and many factors of caving were also determined. Then the relationship between factors and caving was studied. Based on the above research, one effective method by using field monitoring was brought forward to determine the controlling factor. Then some related key technologies were provided, such as keeping the integrality of the top-coal, raising the horizontal resistance of supports and decreasing the real end-face distance etc.. At last one application of this method was presented, and it was proved to be an effective method.展开更多
The theoretical analysis, numerical simulation and field observation were used to study distribution characters of abutment pressure of fully mechanized sublevel caving face in deep mine, fully mechanized sublevel cav...The theoretical analysis, numerical simulation and field observation were used to study distribution characters of abutment pressure of fully mechanized sublevel caving face in deep mine, fully mechanized sublevel caving and pressure relief in entries along goaf to the influence of rock burst. The results show that: (1) With the increasing of mining depth, the abutment pressure zone is larger, its peak point is transferred to the front of face, the danger area occurring rock burst in the two fully mechanized sublevel caving entries is larger, and its position is far from the face; (2) There is larger failure area in the upper coal in front of the fully mechanized caving face, and strata possibly occurring rock burst transferred to the upwards or far from faces because of the main roof's buffer effect to the dynamic pressure burst, then possibility and strength reduced; (3) The position occurring rock burst is stress concentration zones (abutment pressure along the goaf and residual tectonic stress) and zones with geological structure; (4) Strenuous activities of roof is the inducing factor occurring rock burst.展开更多
According to the geological and mining technical conditions of No.18128 sub- level caving face with suspend-shift support,the first working face of the working area,the distribution laws of abutment pressure were stud...According to the geological and mining technical conditions of No.18128 sub- level caving face with suspend-shift support,the first working face of the working area,the distribution laws of abutment pressure were studied by jointly employing FIAC^(3D) numerical simulations and field tests.With the full consideration of these laws and the service time- limit of the mining district,the optimal location of the terminal mining line,should be 60 m away from the W4-B8 track dip,which was 20 m shorter than the 80 m distance deter- mined according to traditional experiences.The retained coal safety pillar for the protect- ing of dips,already proved by the industrial practice,can not only improve the rate of coal recovery and satisfy the subsequent service requirement for the following working faces, but also decrease the maintaining expenditure and thus increase profits.展开更多
Bolting of mining roadway for fully mechanized sublevel caving has been practised successfully in Hebi mining area.It provides a new method for roadway support and settles the problem of support difficulty radically f...Bolting of mining roadway for fully mechanized sublevel caving has been practised successfully in Hebi mining area.It provides a new method for roadway support and settles the problem of support difficulty radically for sublevel caving in Hebi mining area.Where anchor reinforcement holds an important station in roadway support.This article brings forward the arrangement project of anchor based on theoretic analysis.Compared with arranged in the middle of the entry, anchor arranged in the vertex of the entry can reduces the length of anchor,shortens the anchor installation time,and heightens the reliability of anchor installation.展开更多
According to a lot of practical data in Liujialiang Mine and reliability theory and result of computer simulation, operation regularity of fully mechanized sublevel caving mining production system in the condition of ...According to a lot of practical data in Liujialiang Mine and reliability theory and result of computer simulation, operation regularity of fully mechanized sublevel caving mining production system in the condition of gently inclined complicated geological structure and production shortcomings are found out and reliability of system and output of the working face are predicted finally.展开更多
Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key para...Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.展开更多
基金Financial support for this work was provided by the Youth Fund Program of the National Natural Science Foundation of China (No. 42002292)the General Program of the National Natural Science Foundation of China (No. 42377175)the General Program of the Hubei Provincial Natural Science Foundation, China (No. 2023AFB631)
文摘The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.
文摘Hanging roofs or high hang-ups.a common problem in sublevel caving mining,usually result in a large ore loss and undermine mining safety.This paper analyzed the formation of a hanging roof and showed that increased confining pressure and reduced free surface were its main characteristics.In order to break down a hanging roof,a new method based on shock wave collision and stress superposition was developed.In this method,two blastholes containing multi-primer at different positions are simultaneously initiated at first.By doing this,a new free surface and a swell room can be created.After these holes are fired,a long delay time is given to the next blasthole so that the fragments from the first twohole blasting have enough time to fall down.This new method was applied to three hanging roofs in one production area,and all of them were successfully broken down.Field inspection indicated that almost no damage was caused in the nearby drifts/tunnels due to the new method.In addition,the far field vibrations were found to be smaller than the maximum vibrations induced by some other blasts.
文摘The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were l:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models.
基金the National Natural Science Foundation of China(40638040/D0214,50534070/E04)
文摘Under the action of abutment pressure in front of fully mechanized coal face with sublevel caving(CFSC),top-coal over CFSC deformed.In the process of whole de- formation of top-coal,it changed from continuum elastic mass to non-continuum plastic mass contained fissures,become a loose body.According to its bearing characteristics and mechanical properties,top-coal mass can be divided into four deformation zones along the winning direction of CFSC,i.e.initial stress zone,elastic zone,plastic zone and loose zone.Top-coal in plastic zone located in the post-peak zone of the stress-strain curve for top-coal.With equivalent strain principle of damage mechanics and mathemati- cal theory of statistic,combining the movement law of top-coal,set up a constitutive equa- tion with damage statistics for top-coal in different position in CFSC.The equation illus- trated the mathematical relationship among top-coal bearing capacity,horizontal confining pressure along the winning direction of CFSC and mechanical properties of top-coal mate- rial.The conclusions not only provide a basis for numerical computer simulations on damage deformation and failure mechanism for top-coal,but also further promote the ap- plication of damage mechanics in CFSC.
文摘In order to realize the modernized miningmanagementi the authors. based on the practice of a specified mine, developed the application software of the broken ore drawing data management system for sublevel caving through the study on FOXBASE computer language. This paper elabo-rates the overall conception of this system , indicates the main task which should he completed in this system and introduces its module structure and main functions.
文摘According to the analysis of the mechanism of top coal caving, the caving condition was pointed out, and many factors of caving were also determined. Then the relationship between factors and caving was studied. Based on the above research, one effective method by using field monitoring was brought forward to determine the controlling factor. Then some related key technologies were provided, such as keeping the integrality of the top-coal, raising the horizontal resistance of supports and decreasing the real end-face distance etc.. At last one application of this method was presented, and it was proved to be an effective method.
文摘The theoretical analysis, numerical simulation and field observation were used to study distribution characters of abutment pressure of fully mechanized sublevel caving face in deep mine, fully mechanized sublevel caving and pressure relief in entries along goaf to the influence of rock burst. The results show that: (1) With the increasing of mining depth, the abutment pressure zone is larger, its peak point is transferred to the front of face, the danger area occurring rock burst in the two fully mechanized sublevel caving entries is larger, and its position is far from the face; (2) There is larger failure area in the upper coal in front of the fully mechanized caving face, and strata possibly occurring rock burst transferred to the upwards or far from faces because of the main roof's buffer effect to the dynamic pressure burst, then possibility and strength reduced; (3) The position occurring rock burst is stress concentration zones (abutment pressure along the goaf and residual tectonic stress) and zones with geological structure; (4) Strenuous activities of roof is the inducing factor occurring rock burst.
基金the National Natural Science Foundation of China(50674002)the Educational Department of Anhui Province(KJ2008B109)
文摘According to the geological and mining technical conditions of No.18128 sub- level caving face with suspend-shift support,the first working face of the working area,the distribution laws of abutment pressure were studied by jointly employing FIAC^(3D) numerical simulations and field tests.With the full consideration of these laws and the service time- limit of the mining district,the optimal location of the terminal mining line,should be 60 m away from the W4-B8 track dip,which was 20 m shorter than the 80 m distance deter- mined according to traditional experiences.The retained coal safety pillar for the protect- ing of dips,already proved by the industrial practice,can not only improve the rate of coal recovery and satisfy the subsequent service requirement for the following working faces, but also decrease the maintaining expenditure and thus increase profits.
文摘Bolting of mining roadway for fully mechanized sublevel caving has been practised successfully in Hebi mining area.It provides a new method for roadway support and settles the problem of support difficulty radically for sublevel caving in Hebi mining area.Where anchor reinforcement holds an important station in roadway support.This article brings forward the arrangement project of anchor based on theoretic analysis.Compared with arranged in the middle of the entry, anchor arranged in the vertex of the entry can reduces the length of anchor,shortens the anchor installation time,and heightens the reliability of anchor installation.
文摘According to a lot of practical data in Liujialiang Mine and reliability theory and result of computer simulation, operation regularity of fully mechanized sublevel caving mining production system in the condition of gently inclined complicated geological structure and production shortcomings are found out and reliability of system and output of the working face are predicted finally.
基金Financial support for this work, provided by the National Basic Research Program of China (No.2007CB209400)the National Natural Science Foundation of China (No.51004104)
文摘Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.