期刊文献+
共找到3,410篇文章
< 1 2 171 >
每页显示 20 50 100
A non-probabilistic reliability topology optimization method based on aggregation function and matrix multiplication considering buckling response constraints
1
作者 Lei WANG Yingge LIU +2 位作者 Juxi HU Weimin CHEN Bing HAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期321-336,共16页
A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linea... A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linear buckling analysis is conducted,and the sensitivity solution of the linear buckling factor is achieved.For a specific problem in linear buckling topology optimization,a Heaviside projection function based on the exponential smooth growth is developed to eliminate the gray cells.The aggregation function method is used to consider the high-order eigenvalues,so as to obtain continuous sensitivity information and refined structural design.With cyclic matrix programming,a fast topology optimization method that can be used to efficiently obtain the unit assembly and sensitivity solution is conducted.To maximize the buckling load,under the constraint of the given buckling load,two types of topological optimization columns are constructed.The variable density method is used to achieve the topology optimization solution along with the moving asymptote optimization algorithm.The vertex method and the matching point method are used to carry out an uncertainty propagation analysis,and the non-probability reliability topology optimization method considering buckling responses is developed based on the transformation of non-probability reliability indices based on the characteristic distance.Finally,the differences in the structural topology optimization under different reliability degrees are illustrated by examples. 展开更多
关键词 BUCKLING topology optimization aggregation function uncertainty propagation analysis non-probabilistic reliability
下载PDF
Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
2
作者 Xin Dai Liang Zhao +4 位作者 Renchu He Wenli Du Weimin Zhong Zhi Li Feng Qian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期152-166,共15页
Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans... Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans made by the traditional deterministic optimization models infeasible.A data-driven Wasserstein distributionally robust chance-constrained(WDRCC)optimization approach is proposed in this paper to deal with demand uncertainty in crude oil scheduling.First,a new deterministic crude oil scheduling optimization model is developed as the basis of this approach.The Wasserstein distance is then used to build ambiguity sets from historical data to describe the possible realizations of probability distributions of uncertain demands.A cross-validation method is advanced to choose suitable radii for these ambiguity sets.The deterministic model is reformulated as a WDRCC optimization model for crude oil scheduling to guarantee the demand constraints hold with a desired high probability even in the worst situation in ambiguity sets.The proposed WDRCC model is transferred into an equivalent conditional value-at-risk representation and further derived as a mixed-integer nonlinear programming counterpart.Industrial case studies from a real-world refinery are conducted to show the effectiveness of the proposed method.Out-of-sample tests demonstrate that the solution of the WDRCC model is more robust than those of the deterministic model and the chance-constrained model. 展开更多
关键词 DISTRIBUTIONS Model optimization Crude oil scheduling Wasserstein distance Distributionally robust chance constraints
下载PDF
A Two-Stage Scenario-Based Robust Optimization Model and a Column-Row Generation Method for Integrated Aircraft Maintenance-Routing and Crew Rostering
3
作者 Khalilallah Memarzadeh Hamed Kazemipoor +1 位作者 Mohammad Fallah Babak Farhang Moghaddam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1275-1304,共30页
Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruption... Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level. 展开更多
关键词 Aircraft maintenance routing crew scheduling ROSTERING uncertainty scenario-based robust optimization column and row generation
下载PDF
Research on Regulation Method of Energy Storage System Based on Multi-Stage Robust Optimization
4
作者 Zaihe Yang Shuling Wang +3 位作者 Runhang Zhu Jiao Cui Ji Su Liling Chen 《Energy Engineering》 EI 2024年第3期807-820,共14页
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ... To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems. 展开更多
关键词 Multi-stage robust optimization energy storage system regulation methods output uncertainty
下载PDF
Robust Optimization Operation of Power System Considering the Non-probabilistic Uncertainty of Parameter 被引量:1
5
作者 李雪 何震晨 杜大军 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期708-712,共5页
Probabilistic method requires a lot of sample information to describe the probability distributions of uncertain variables and has difficulty in dealing with the optimization problem with uncertain parameters which co... Probabilistic method requires a lot of sample information to describe the probability distributions of uncertain variables and has difficulty in dealing with the optimization problem with uncertain parameters which contains unsufficient information.To solve this problem,a robust optimization operation method based on information gap decision theory(IGDT) is presented considering the non-probabilistic uncertainties of parameters.By the proposed method the maximum resistance to the disturbance of uncertain parameters is achieved and the optimization strategies with uncertain parameters are presented.Finally,numerical simulation is performed on the modified IEEE-14 bus system.Numerical results show the effectiveness of the proposed approach. 展开更多
关键词 probabilistic uncertain disturbance difficulty dealing Pareto guaranteed guarantees considering constraint
下载PDF
Robust optimal dispatch strategy of integrated energy system considering CHP-P2G-CCS
6
作者 Bin Zhang Yihui Xia Xiaotao Peng 《Global Energy Interconnection》 EI CSCD 2024年第1期14-24,共11页
Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model... Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system. 展开更多
关键词 Combined heat and power Power-to-gas Carbon capture system Integrated energy system robust optimization
下载PDF
A robust optimization model for demand response management with source-grid-load collaboration to consume wind-power 被引量:2
7
作者 Xiangfeng Zhou Chunyuan Cai +3 位作者 Yongjian Li Jiekang Wu Yaoguo Zhan Yehua Sun 《Global Energy Interconnection》 EI CSCD 2023年第6期738-750,共13页
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme... To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method. 展开更多
关键词 Renewable power system optimal dispatching Wind-power consumption Source-grid-load collaboration Load demand response Two-stage robust optimization model
下载PDF
Distributionally robust optimization based chance-constrained energy management for hybrid energy powered cellular networks 被引量:1
8
作者 Pengfei Du Hongjiang Lei +2 位作者 Imran Shafique Ansari Jianbo Du Xiaoli Chu 《Digital Communications and Networks》 SCIE CSCD 2023年第3期797-808,共12页
Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-m... Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability. 展开更多
关键词 Cellular networks Energy harvesting Energy management Chance-constrained Distributionally robust optimization
下载PDF
Comparison between 4D robust optimization methods for carbon-ion treatment planning
9
作者 Wen-Yu Wang Yuan-Yuan Ma +4 位作者 Hui Zhang Xin-Yang Zhang Jing-Fen Yang Xin-Guo Liu Qiang Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第9期94-105,共12页
Intensity-modulated particle therapy(IMPT)with carbon ions is comparatively susceptible to various uncertainties caused by breathing motion,including range,setup,and target positioning uncertainties.To determine relat... Intensity-modulated particle therapy(IMPT)with carbon ions is comparatively susceptible to various uncertainties caused by breathing motion,including range,setup,and target positioning uncertainties.To determine relative biological effectiveness-weighted dose(RWD)distributions that are resilient to these uncertainties,the reference phase-based four-dimensional(4D)robust optimization(RP-4DRO)and each phase-based 4D robust optimization(EP-4DRO)method in carbon-ion IMPT treatment planning were evaluated and compared.Based on RWD distributions,4DRO methods were compared with 4D conventional optimization using planning target volume(PTV)margins(PTV-based optimization)to assess the effectiveness of the robust optimization methods.Carbon-ion IMPT treatment planning was conducted in a cohort of five lung cancer patients.The results indicated that the EP-4DRO method provided better robustness(P=0.080)and improved plan quality(P=0.225)for the clinical target volume(CTV)in the individual respiratory phase when compared with the PTV-based optimization.Compared with the PTV-based optimization,the RP-4DRO method ensured the robustness(P=0.022)of the dose distributions in the reference breathing phase,albeit with a slight sacrifice of the target coverage(P=0.450).Both 4DRO methods successfully maintained the doses delivered to the organs at risk(OARs)below tolerable levels,which were lower than the doses in the PTV-based optimization(P<0.05).Furthermore,the RP-4DRO method exhibited significantly superior performance when compared with the EP-4DRO method in enhancing overall OAR sparing in either the individual respiratory phase or reference respiratory phase(P<0.05).In general,both 4DRO methods outperformed the PTV-based optimization in terms of OAR sparing and robustness. 展开更多
关键词 Intensity-modulated particle therapy Carbon-ion radiotherapy Uncertainties Four-dimensional robust optimization Lung cancer Relative biological effectiveness-weighted dose robustness Treatment planning system
下载PDF
Emergency Energy Management of Microgrid in Industrial Park Basedon Robust Optimization
10
作者 Haoliang Yang Yonggang Dong Zhifang Yang 《Energy Engineering》 EI 2023年第12期2917-2931,共15页
Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment meth... Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment method based on the robust optimal method and the industrial park micro-network with the optical energy storage system.After controlling the load input,a control strategy of adjusting and removing is proposed.Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the power supply.Uncertainty is designed to adjust the effect of uncertainty on the problem.The example shows that this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that the input of the control load can be optimized. 展开更多
关键词 robust optimal weighting coefficient emergency energy sources rolling optimization microgrid in an industrial park
下载PDF
Robustness optimization for rapid prototyping of functional artifacts based on visualized computing digital twins
11
作者 Jinghua Xu Kunqian Liu +5 位作者 Linxuan Wang Hongshuai Guo Jiangtao Zhan Xiaojian Liu Shuyou Zhang Jianrong Tan 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期33-50,共18页
This study presents a robustness optimization method for rapid prototyping(RP)of functional artifacts based on visualized computing digital twins(VCDT).A generalized multiobjective robustness optimization model for RP... This study presents a robustness optimization method for rapid prototyping(RP)of functional artifacts based on visualized computing digital twins(VCDT).A generalized multiobjective robustness optimization model for RP of scheme design prototype was first built,where thermal,structural,and multidisciplinary knowledge could be integrated for visualization.To implement visualized computing,the membership function of fuzzy decision-making was optimized using a genetic algorithm.Transient thermodynamic,structural statics,and flow field analyses were conducted,especially for glass fiber composite materials,which have the characteristics of high strength,corrosion resistance,temperature resistance,dimensional stability,and electrical insulation.An electrothermal experiment was performed by measuring the temperature and changes in temperature during RP.Infrared thermographs were obtained using thermal field measurements to determine the temperature distribution.A numerical analysis of a lightweight ribbed ergonomic artifact is presented to illustrate the VCDT.Moreover,manufacturability was verified based on a thermal-solid coupled finite element analysis.The physical experiment and practice proved that the proposed VCDT provided a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufacturing efficacy under hybrid uncertainties. 展开更多
关键词 robustness optimization design Rapid prototyping Functional artifacts Fuzzy decision-making Infrared thermographs Visualized computing digital twins
下载PDF
Non-probabilistic Robust Optimal Design Method 被引量:1
12
作者 SUN Wei XU Huanwei ZHANG Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期184-189,共6页
For the purpose of dealing with uncertainty factors in engineering optimization problems, this paper presents a new non-probabilistic robust optimal design method based on maximum variation estimation. The method anal... For the purpose of dealing with uncertainty factors in engineering optimization problems, this paper presents a new non-probabilistic robust optimal design method based on maximum variation estimation. The method analyzes the effect of uncertain factors to objective and constraints functions, and then the maximal variations to a solution are calculated. In order to guarantee robust feasibility the maximal variations of constraints are added to original constraints as penalty term; the maximal variation of objective function is taken as a robust index to a solution; linear physical programming is used to adjust the values of quality characteristic and quality variation, and then a bi-level mathematical robust optimal model is constructed. The method does not require presumed probability distribution of uncertain factors or continuous and differentiable of objective and constraints functions. To demonstrate the proposed method, the design of the two-bar structure acted by concentrated load is presented. In the example the robustness of the normal stress, feasibility of the total volume and the buckling stress are studied. The robust optimal design results show that in the condition of maintaining feasibility robustness, the proposed approach can obtain a robust solution which the designer is satisfied with the value of objective function and its variation. 展开更多
关键词 variation analysis linear physical programming bi-level optimization robust design
下载PDF
PROCESSING PARAMETER OPTIMIZATION OF FDM BASED ON ROBUST DESIGN 被引量:7
13
作者 张剑峰 彭安华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期62-67,共6页
The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms ... The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing. 展开更多
关键词 fused deposition modeling (FDM) robust design fuzzy comprehensive assessment parameter optimization
下载PDF
Data-driven source-load robust optimal scheduling of integrated energy production unit including hydrogen energy coupling 被引量:1
14
作者 Jinling Lu Dingyue Huang Hui Ren 《Global Energy Interconnection》 EI CSCD 2023年第4期375-388,共14页
A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations... A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness. 展开更多
关键词 Hydrogen energy coupling DATA-DRIVEN robust kernel density estimation robust optimization Integrated demand response
下载PDF
Reliability-based Robust Optimization Design of Automobile Components with Non-normal Distribution Parameters 被引量:14
15
作者 YANG Zhou ZHANG Yimin +2 位作者 HUANG Xianzhen ZHANG Xufang TANG Le 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期823-830,共8页
In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong... In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components. 展开更多
关键词 fourth-moment technique reliability robust design reliability optimization non-normal distribution parameters
下载PDF
A Metamodeling Method Based on Support Vector Regression for Robust Optimization 被引量:5
16
作者 XIANG Guoqi HUANG Dagui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期242-251,共10页
Metamodeling techniques have been used in robust optimization to reduce the high computational cost of the uncertainty analysis and improve the performance of robust optimization problems with computationally expensiv... Metamodeling techniques have been used in robust optimization to reduce the high computational cost of the uncertainty analysis and improve the performance of robust optimization problems with computationally expensive simulation models. Existing metamodels main focus on polynomial regression(PR), neural networks(NN) and Kriging models, these metamodels are not well suited for large-scale robust optimization problems with small size training sets and high nonlinearity. To address the problem, a reduced approximation model technique based on support vector regression(SVR) is introduced in order to improve the accuracy of metamodels. A robust optimization method based on SVR is presented for problems that involve high dimension and nonlinear. First appropriate design parameter samples are selected by experimental design theories, then the response samples are obtained from the simulations such as finite element analysis, the SVR metamodel is constructed and treated as the mean and the variance of the objective performance functions. Combining other constraints, the robust optimization model is formed which can be solved by genetic algorithm (GA). The applicability of the method developed is demonstrated using a case of two-bar structure system study. The performances of SVR were compared with those of PR, Kriging and back-propagation neural networks(BPNN), the comparison results show that the prediction accuracy of the SVR metamodel was higher than those of other metamodels under uncertainty. The robust optimization solutions are near to the real result, and the proposed method is found to be accurate and efficient for robust optimization. This reaserch provides an efficient method for robust optimization problems with complex structure. 展开更多
关键词 support vector regression METAMODELING robust optimization genetic algorithm
下载PDF
Robust Collaborative Optimization Method Based on Dual-response Surface 被引量:5
17
作者 WANG Wei FAN Wenhui +1 位作者 CHANG Tianqing YUAN Yuming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期169-176,共8页
A novel method for robust collaborative design of complex products based on dual-response surface (DRS-RCO) is proposed to solve multidisciplinary design optimization (MDO) problems under uncertainty. Collaborativ... A novel method for robust collaborative design of complex products based on dual-response surface (DRS-RCO) is proposed to solve multidisciplinary design optimization (MDO) problems under uncertainty. Collaborative optimization (CO) which decomposes the whole system into a double-level nonlinear optimization problem is widely accepted as an efficient method to solve MDO problems. In order to improve the quality of complex product in design process, robust collaborative optimization (RCO) is developed to solve those problems under uncertain conditions. RCO does optimization on the linear sum of mean and standard deviation of objective function and gets an optimal solution with high robustness. Response surfaces method is an important way to do approximation in robust design. DRS-RCO is an improved RCO method in which dual-response surface replaces system uncertainty analysis module of CO. The dual-response surface is the approximate model of mean and standard deviation of objective function respectively. In DRS-RCO, All the information of subsystems is included in dual-response surfaces. As an additional item, the standard deviation of objective function is added to the subsystem optimization. This item guarantee both the mean and standard deviation of this subsystem is reaching the minima at the same time. Finally, a test problem with two coupled subsystems is conducted to verify the feasibility and effectiveness of DRS-RCO. 展开更多
关键词 multidisciplinary design optimization robust design dual-response surface
下载PDF
Multi-parameter Sensitivity Analysis and Application Research in the Robust Optimization Design for Complex Nonlinear System 被引量:4
18
作者 MA Tao ZHANG Weigang +1 位作者 ZHANG Yang TANG Ting 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期55-62,共8页
The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-d... The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design. 展开更多
关键词 complex nonlinear system global sensitivity analysis robust optimization design grouped variables
下载PDF
MULTIDISCIPLINARY ROBUST OPTIMIZATION DESIGN 被引量:2
19
作者 ChenJianjiang XiaoRenbin ZhongYifang DouGang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期46-50,共5页
Because uncertainty factors inevitably exist under multidisciplinary designenvironment, a hierarchical multidisciplinary robust optimization design based on response surfaceis proposed. The method constructs optimizat... Because uncertainty factors inevitably exist under multidisciplinary designenvironment, a hierarchical multidisciplinary robust optimization design based on response surfaceis proposed. The method constructs optimization model of subsystem level and system level tocoordinate the coupling among subsystems, and also the response surface based on the artificialneural network is introduced to provide information for system level optimization tool to maintainthe independence of subsystems, i.e. to realize multidisciplinary parallel design. The applicationcase of electrical packaging demonstrates that reasonable robust optimum solution can be yielded andit is a potential and efficient multi-disciplinary robust optimization approach. 展开更多
关键词 Multidisciplinary optimization robust design Collaborative optimization Response surface
下载PDF
Robust Design Optimization Method for Centrifugal Impellers under Surface Roughness Uncertainties Due to Blade Fouling 被引量:10
20
作者 JU Yaping ZHANG Chuhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期301-314,共14页
Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simpli... Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression(SVR) metamodel is combined with the Monte Carlo simulation(MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors. 展开更多
关键词 centrifugal impeller robust design optimization surface roughness uncertainty analysis
下载PDF
上一页 1 2 171 下一页 到第
使用帮助 返回顶部